-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': True, 'Zgroup': False, 'abelian': True, 'ambient': '32440320.b', 'ambient_counter': 2, 'ambient_order': 32440320, 'ambient_tex': 'C_2^{12}.M_{11}', 'central': False, 'central_factor': False, 'centralizer_order': 4096, 'characteristic': True, 'core_order': 2048, 'counter': 771, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '32440320.b.15840.A', 'maximal': False, 'maximal_normal': False, 'metabelian': True, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': True, 'normal': True, 'old_label': '15840.a1.N', 'outer_equivalence': True, 'perfect': False, 'proper': True, 'quotient': '15840.q', 'quotient_Agroup': False, 'quotient_abelian': False, 'quotient_cyclic': False, 'quotient_hash': 8034936889538388295, 'quotient_metabelian': True, 'quotient_nilpotent': False, 'quotient_order': 15840, 'quotient_simple': False, 'quotient_solvable': False, 'quotient_supersolvable': False, 'quotient_tex': 'C_2\\times M_{11}', 'simple': False, 'solvable': True, 'special_labels': ['S', 'C2'], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': None, 'subgroup_hash': 595564629897153398, 'subgroup_order': 2048, 'subgroup_tex': 'C_2^{11}', 'supersolvable': True, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '32440320.b', 'aut_centralizer_order': None, 'aut_label': '15840.A', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': '7920.A', 'complements': None, 'conjugacy_class_count': 1, 'contained_in': None, 'contains': None, 'core': '15840.A', 'coset_action_label': None, 'count': 1, 'diagramx': [-1, 5364, -1, 7594], 'generators': [10904380660461683146792284847, 5167, 20411645834288669703686597719606480360978601647, 60448715589986999452694982546765003886292141083473967, 122000787836928007, 1313901393960, 8231691320578226211045097771008000, 5160, 25903229683158464676480, 10341831284004956816162169531924520279680, 40279687], 'label': '32440320.b.15840.A', 'mobius_quo': None, 'mobius_sub': None, 'normal_closure': '15840.A', 'normal_contained_in': [], 'normal_contains': [], 'normalizer': '1.a1', 'old_label': '15840.a1.N', 'projective_image': '16220160.c', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '15840.A', 'subgroup_fusion': None, 'weyl_group': '7920.a'}
-
label None does not appear in gps_groups
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '4.2', 'all_subgroups_known': False, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 1, 'aut_exponent': 2640, 'aut_gen_orders': [12, 8], 'aut_gens': [[2597822231175200806981867153230934918340651343615134662, 1173762232736947426780548442374037783095951697921680006], [247418359828361213119399699278523748650516592958820433, 184056533586655546047944070050207743194704488405564782], [2474181860279783736039028682899760284468905544084087102, 926343851408647768941575504966544570458206768111699206]], 'aut_group': '32440320.b', 'aut_hash': 7803173533006989596, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 32440320, 'aut_permdeg': 2664, 'aut_perms': [342417883519102489482751115377893093345367582748427068132904070241516975599650087506935280013571633600952632635670621647378203940371237683610380400420854574053480641766484747475322338040095832520309776893345498074677384774830022522309213177537336886066784458676534971246161115494074261192981100923837180892166235677432375427840486564612178719680100740101226718442251232673024362501302087338358239657939281125103234556370627874207509486367039239944471585610230338079250093462905230784121499423750198957437555930853208684335832039361340554678450929152214147557513915417070675789895023348378012778834238087742191300975257901719670470000448029037263209556873916535877345909240033103308247215464017133563339271588656220050013109222052595010491147456630055537169175939114099695723658796637808251582181207486723247682974546916567712623517510347366385307741220921627598163697782553811809701089171192728479565445503104371696641243538392415223674732118077164421123683659501567357277634415166746287399242884008701277599069258696865227567001378451358608993065300508467458807571727183001411180510550160971324536946232259976724082240748009645011120795939734029673699147942768613268767330923393033007025022365151927663789413789367542439514847782318005762330747358763895077026016093351489944332314513844308369994210590581278353793327965964027650171399633557977167219559269453652637426922597208865689958698313042574329721207455589046240517310500731993700065875920615024882203005825003845723382001215069326639853172510053554953636630551844954754437903215226261400016404349190783605263703676440869612439562478960073884724524286712253019604239443644347192398114026962510565145635919339859873669394454143589385479908143566322162999263538165995338786811770185810831298155452749871304486901512925853578436678521394090619177466200965568443537000892579125424355965907302721896231000334778907657256684137256550173028493215101293721506002834595124323204261942787081281986838627545607737707635743086029699451852780750036099339084471480105830082235348383387577173124043148567710396773571003880859551350230128657513322038645230485927616312703285802487289247816040031448905991243573567701040321769928985286815501552682160488785089250239459825134345231695997539723718369714155335033094363749823947252614289216569635198099608719090415422347373935765993312618913118063379992121177636773348401062895249185017549667843866098060259842881606291242245916523211486784207364649792994304458164359860996165900362541522273809054626072809021957816638743055554669590514349562784845736986533701936032121836343931357095882302956306436950753579312929217746874316833920949528926616009773150479485426458368080595966486568518729597064071953131262856574902119348694139822867969450984566574335901943573397692961597710900208766743445824208711570851025839582803726326461255839786499225918047937587671953429417013910636779177609609558535321852032918278183231249230924407733668093939563942589063099135611255794924654102616782750710683239089047582013932962565013013115332607828591280934766758299788965432664223673991244865436558934843565654081640307472558783093683671386297157888795218400981984375795495928618630035094589117254312788319220132560134918246447403965643426061137068377074553061567490840231985347151303766174711354812928380914408084391858215183905773759210715515312286596577122763202333992760059501766856714378322031811159870375467415426403231341116554581632593904555229280206425902292428863012522968104417303077738442896688259943971828145772549041214676467952324305601861670211578472921602283643894888404221380481276097597852436841846086572039636189955095726083027530210049267676863797576281932780021021059326593711676477486142707860332777474155860676676809862042517812325555295712993512252786848346774630649544508593715266626197048812429512765143465876091066880494330870670123816909847537778249627807942246298982708117175566156220902215163691319267775689548858998819005617904925619349858953176175947477202576255936948834237257984105609980224995005758434480237124599216333247813493639456293132822760605335115579104973020334763216385361880021048209577892475404309143984317299211917669734580474489059449948166930046500508806859153985881929499109718470589656971444573234341667867708289270605488645953583235980709115811468057723996447926472126011610367738294514680877589812068518702863504411270253066297877578214684068778973387560050941317790182417757015035991148680118030459039158689507239941260980556733092797652049966840626318387733105031603611576178615508874394438084666835146912251576299674123633869685911196253998172953666888243123402667939177038837646483029783820424033257798621198975761093294237057752019831922954116876059006047300512042137024754193413867641759343401724392451632395010362562239424764507598710380516271791357213373020046197423957055785909832764027282859744934442505173667418534093417046490612549106987826834177101621422667540312246571950112669743167453837911729928401012684084893863529914944753222847712098281429886692432204588408917630073622816249331262371835676769070070609001982352685993706679269345970748400246249516802081647199110785095945735098571737906098052385752984591726873717079808365846932769410440607695405163031582932733968170297231546713995535575634982371009840064036015601506618055368127648514684516347795873825344199451115259749325562838618836443078653277952280732808866166324063422332907250342720795041848527703014986275830638329829664641957549641708615347632772897888780168460567878597203763367199650787601024533852653388090669959566502622520049562058722293558042718936715608584929238335458388222593670434287653373817888383868891127938966874741327431316812889082901593038931119459474751991061065127038581329766578697914572279235637243753883147544190137727609745543639874378931304425974471586106440330369659130112788562820223197814193410152955835244764830726428120606811128566751212401705679994769553108941082822870573037932040255844217798927074784112642330093978167217012694265044323144570248460000042453728094786997733547588659071916362860389793218188000014277688701473051248235897380507967831445349255797814803216116400087480443858068318973806185105220114212189741297028603985879177953200791140620819592362082882380501274386227849057283079541979265346487036319715161821625434977927331731389053750047169784778222656557122871469812151693165200922312450155450299456226007965131007474495539749144111514901364730449394885486251573697719118216042712201549670729021097755569473779511563657671301118153020496030298835739495225994232179688888253975703433324013438764795529852811775580670480807694635864236970428467384512572581662068127221848449176815270197617309754621871422685254323135350053414436454550302439770086106649234880774163368758241116193744312866238582258794011119434590213673278384818998629621121272972072345345713795030575447863313021451693483131885933946085542434775582778555789982022851803555897379299271293507474890717457658879196741630349150600525405762619958800270938720932796369808999893046574964988905637254339264707970238075638356396783872216244300319359005148078393853879586677461075945695131325435704300757802392051921360106630122126797685217258911142361422252096002298771717461933788190722937815716281951371631906681782383495139322020190975958984582597212704518156208858203117944016663691281825869001514937557692912872760911998417232678909983634369494592036585394699131301309622652130385060677870821061957044382251426601623757895554160594727496487002775549097081186172947832272887940051773807814287431878235071278505103140943886811353780200197680144664942004015093066402215929658218957926356102263507162420137660999140475069079673695227863281872432915484619865278815561500734385181879155177916532136941599375701885908082733382782133927168970942259826064497548199257051383897777447417561783622395980745923209320115835915506970286263059118391343456981490034355494011226420861017207785844347324312589114344367664771543583520067897145512554629714843101166255436880, 558617163071088689905552313289514972759504134903774732089360025508698159225244850614228225858774512341504937797617905702741358772299761649166982567219549889289778767388717025000616344485321937117416763498015125093227216666714099816092413547689258172437771011858499472045019626390106574661570842739481418189538047793419129665733715217648532030418850673026465296482568871926970044949563685500206232966064658422040694567376528688618425404242328124026876455992198566882721439308942311237223310270742877889119526052663794828378920382230198456051293081062661897733596047970444612883439207058816621050378600015467597274353518358746604216083722947896147284521445974203237396851957881182694720613760150921317243955908938126120770788019429160246134597202457314422391083492343652655114360817928099444822689492667227063248470403121589170422165010134358536493413867141673736834354685649003045652812809244784209152508879100468146546517560673934909205406272129929179108677200317501037324413587398224665892348064193201807454953287019906328405318626041368103913299320461931239985643797523870738199630439216964752633130850261050196951637752645464318655870968491211430262459830512240982655600108079126355222097590173359116828324962913480532713311601069271586084308841804545701665980678648916328318347282968807102252274361635318686958317051440590073589152436390434052265884965259352260295161229531151149475346461554271489628504403303360383485587278519894947020213144928410464343378774381951208032705201790830584535421705167748159545451073331821990191467359012590560735065481073624484267971587475805468616862985898986434540654479575117902356655619544460700130690617178064915144562734699079107159007107565323852277909237085663322004279172887394365444937081921295126701215883238091556659775936841481759965338304446020734918637727197323897680759980923623903507774064536076468906956937786626149887436944973791578221262996763725727203859562294776325357015812844475019194730496830610414391764848376318488535401152909133425026332386089638116454690972409737441792839289087142964635836596271857845965611195888113328119361724905351966615133606774105501521268265718114556726590484642267742790513306016114341710923853638531708949218462854226114643547595577325048263795485525798142826600296928320033135241221102292235079451314806053423530607797375332074043109057274424887695119282552814598416280485147656084338838346809698202166060168454048061817233977341176835581247029439568397507099064242403661877203472857954016653426086403853340473748680772288199477453984883522518111906640641050485171274367539485317072099266384137275958573087569189969628163318372272701007260271146133470895081488208917059885051725431966657393386945264265792205468058716798715801832121722047835601296389695679654849114384419547483922704859880116309060142802437232605445994768983204824816416008268223224061840690914017720594076440407672697927993714284860403063999213742522274352942290049327130908697285432520553003152189425508172980650509342008273847322254461662417363621569721126331175045325269496733062428142643350918880361433664328478756514408735293210496797237076159910455626945910305198435872754858021595196875062962067655248203407611640001975633142546860238395885435756091851385224735247534233923287553084329727128109975800563023805053724501768347395580186696594199487102970237752148480892270365591784822310985307725035423794787544356471115893442048922561224606185496580140391973902604134313206784931552596406492766525459073844093436391869932233072265125187368524564467398403894637398814631314157468073730505389763461223576112423031557126114930263490752931698697686692922121774509323886846714678014159220013231164312913003389274423377428868327070773718356362604174070179066804281330610405392993467195848143812307990779448974001655114275002817328348455316812105286503928608236529299075268009741789295832460970504324520451673813749690914871049816983461539915637372827279046286527567054041143891134718723560042131591287465681555223443912639536242605225757237376476124669386401624414012729441099778130714763939532930596385531253730924799323991315853750812053892436824675414961420055668359278425164663254306614510170475532251809653792830538204406430855606367457888261240273542293096377693400528221531021909779300966152640100219992358728438895402019270999892403334870587343695073582981224882657704233024490737835653580351452154843852426687609986876066256344240795198207935844143438978770058728148011301633708584189588195322746337014818960816223173851903381137271472926603182728008884153594331210108239551247093050111103886428984810161810923927640715850406296906062581129860012001085935218514115406318266494690238516247738175015274136059413592488424155566464818973383766591911153196656142198673407382500285809073124683860010403109955588207030621561281544448683929284391535151420349952976238528081839081534100340781085044067775653135223886926623056429529214848244360855748010798579870669525109410877932137728457224600727349065188100587121857191039573577283668072767145444741575311871951499983339102703644531989779578358744142759595871181335207488409453502765090527838672776328653015489708261224264496941496920367130790655776819131273670528898351850191832832859138008157457895399115464901094430986450267246855279305299596149204742041537982608203055176247930903339229553004795084309862482742373381547565419742966035787699323946227480369432166229018946677106181194716050541638607602857755443245005907288244530349182267141672855316926805303838581878960365300046988430354325670107172817178614298045855842732164740316761620339346399667153204296215876117736751162060884693265628903844917881862766636411836590111079856204924881469389568225963105437632931937116541353043025806039448430901539932603178335880418697517966121762397666597030263982912007260580311224822671774697607387935239844518185342117757004732910800867124848325928670629892108897845658326165147054171607297984556303939374367270162167462464666501657793154634385142434027294735705265619752571773251069221455074063206419781650069503720115294987117602773196125280914578934556292508745035682157226816593167828251578801030776639193818929181988962941147777641913301492054324385813828946937461208938667401835840216227305620102653045525546789161447109938800137988941015436482538990345634714128256839429176360290686228098486863953523347182246524287281697151387636813627777687085577353182722178632526975296616170412619173794033833166344670033590274688314175299043204609998864335302291871635888895033416238987869478196581474072773137924558746803502423029547761840798513880403498375303511832380685187411310461798685304081638730507150839490203490764252349742881148008772121369373235188900731179040028346818694956917669048968900488278327651299993093882041571372221562557785629108165273217340981797440527001357193254507706091366294387276283346913579080818729669173244827766384693395935122702104207018753793601104610679089142012211145428518884645298101632079988178219769385457090837937304378526105699628466518757333604172462775847947974490294840618659473597427223256209411879838445742922711583448507881911472125297044288247220562620889003494064266253606146622496244225590200943797604625121354904340991733542654561040000732777174950717824855643292446083321999873263941382548654686251632085912689925959377957822310008684032427512180864389283377652904646931893050810710046502917962030072180919086844751157284978420938734772619508194950503868408924403318915155461619431278536737560527070242053724320767073061833520047999097429048845303850752217564715499516661476717135199852464945071643015341479847263297336700433387901540249005439077087168063539260683196844238447932053958982987759172154697144326770503284900680265096228103398932720092233331320973168535448428063420276880379605587185019330095976934984475371114257174631709272120379905583775570933568588619482420325089754102750285426469442923857788480102678785784605120803980592642859900049965198519531768550439871865300643579556458569300473943608459], 'aut_phi_ratio': 4.125, 'aut_solvable': False, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 11, 1, 2], [2, 12, 2, 1], [2, 55, 1, 2], [2, 66, 1, 2], [2, 132, 2, 1], [2, 165, 1, 2], [2, 220, 2, 1], [2, 330, 1, 2], [2, 396, 1, 2], [2, 660, 2, 1], [2, 2640, 1, 2], [2, 7920, 1, 2], [2, 10560, 2, 1], [3, 28160, 1, 1], [4, 2640, 1, 2], [4, 7920, 1, 2], [4, 10560, 1, 4], [4, 10560, 2, 3], [4, 15840, 1, 4], [4, 31680, 1, 6], [4, 31680, 2, 4], [4, 126720, 1, 4], [4, 253440, 2, 1], [5, 405504, 1, 1], [6, 28160, 1, 3], [6, 28160, 2, 2], [6, 56320, 1, 2], [6, 56320, 2, 1], [6, 84480, 1, 4], [6, 84480, 2, 2], [6, 168960, 1, 2], [6, 168960, 2, 1], [6, 337920, 1, 2], [6, 337920, 2, 1], [8, 126720, 1, 4], [8, 253440, 1, 4], [8, 253440, 2, 3], [8, 506880, 1, 4], [8, 506880, 2, 2], [10, 405504, 1, 7], [10, 405504, 2, 4], [11, 737280, 1, 2], [12, 337920, 1, 6], [12, 337920, 2, 3], [16, 506880, 1, 4], [16, 506880, 2, 2], [22, 737280, 1, 2], [22, 737280, 2, 2]], 'aut_supersolvable': False, 'aut_tex': 'C_2^{12}.M_{11}', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 2, 'autcent_group': '2.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 2, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_2', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 2640, 'autcentquo_group': '16220160.c', 'autcentquo_hash': 7358568238328148264, 'autcentquo_nilpotent': False, 'autcentquo_order': 16220160, 'autcentquo_solvable': False, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_2^{11}.M_{11}', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 11, 2], [2, 12, 2], [2, 55, 2], [2, 66, 2], [2, 132, 2], [2, 165, 2], [2, 220, 2], [2, 330, 2], [2, 396, 2], [2, 660, 2], [2, 2640, 2], [2, 7920, 2], [2, 10560, 2], [3, 28160, 1], [4, 2640, 2], [4, 7920, 2], [4, 10560, 10], [4, 15840, 4], [4, 31680, 14], [4, 126720, 4], [4, 253440, 2], [5, 405504, 1], [6, 28160, 7], [6, 56320, 4], [6, 84480, 8], [6, 168960, 4], [6, 337920, 4], [8, 126720, 4], [8, 253440, 10], [8, 506880, 8], [10, 405504, 15], [11, 737280, 2], [12, 337920, 12], [16, 506880, 8], [22, 737280, 6]], 'center_label': '2.1', 'center_order': 2, 'central_product': True, 'central_quotient': '16220160.c', 'commutator_count': 1, 'commutator_label': '8110080.a', 'complements_known': False, 'complete': False, 'complex_characters_known': False, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '7920.a'], 'composition_length': 13, 'conjugacy_classes_known': True, 'counter': 2, 'cyclic': False, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['16220160.c', 1], ['2.1', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 11, 1, 2], [2, 12, 1, 2], [2, 55, 1, 2], [2, 66, 1, 2], [2, 132, 1, 2], [2, 165, 1, 2], [2, 220, 1, 2], [2, 330, 1, 2], [2, 396, 1, 2], [2, 660, 1, 2], [2, 2640, 1, 2], [2, 7920, 1, 2], [2, 10560, 1, 2], [3, 28160, 1, 1], [4, 2640, 1, 2], [4, 7920, 1, 2], [4, 10560, 1, 10], [4, 15840, 1, 4], [4, 31680, 1, 14], [4, 126720, 1, 4], [4, 253440, 1, 2], [5, 405504, 1, 1], [6, 28160, 1, 7], [6, 56320, 1, 4], [6, 84480, 1, 8], [6, 168960, 1, 4], [6, 337920, 1, 4], [8, 126720, 1, 4], [8, 253440, 1, 10], [8, 506880, 2, 4], [10, 405504, 1, 7], [10, 405504, 2, 4], [11, 737280, 2, 1], [12, 337920, 1, 12], [16, 506880, 2, 4], [22, 737280, 2, 3]], 'element_repr_type': 'Perm', 'elementary': 1, 'eulerian_function': None, 'exponent': 2640, 'exponents_of_order': [16, 2, 1, 1], 'factors_of_aut_order': [2, 3, 5, 11], 'factors_of_order': [2, 3, 5, 11], 'faithful_reps': [[22, 1, 1], [66, 1, 4], [110, 1, 6], [165, 1, 4], [176, 1, 2], [198, 1, 1], [220, 1, 2], [264, 1, 4], [330, 0, 4], [330, 1, 10], [396, 1, 2], [440, 1, 4], [495, 1, 4], [660, 1, 4], [792, 1, 2], [990, 1, 4], [1584, 1, 2]], 'familial': False, 'frattini_label': '1024.djt', 'frattini_quotient': '31680.l', 'hash': 7803173533006989596, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 2640, 'inner_gen_orders': [12, 8], 'inner_gens': [[2597822231175200806981867153230934918340651343615134662, 1237090898440422159293978598175617141217292033948337337], [1792376355229743524169383722272148745030839472302610040, 1173762232736947426780548442374037783095951697921680006]], 'inner_hash': 7358568238328148264, 'inner_nilpotent': False, 'inner_order': 16220160, 'inner_split': True, 'inner_tex': 'C_2^{11}.M_{11}', 'inner_used': [1, 2], 'irrC_degree': 22, 'irrQ_degree': 22, 'irrQ_dim': None, 'irrR_degree': None, 'irrep_stats': [[1, 4], [10, 12], [11, 4], [16, 8], [22, 2], [44, 4], [45, 4], [55, 4], [66, 8], [110, 12], [165, 8], [176, 4], [198, 2], [220, 4], [264, 8], [330, 28], [396, 4], [440, 8], [495, 8], [660, 8], [792, 4], [990, 8], [1584, 4]], 'label': '32440320.b', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': False, 'name': 'C2^12.M11', 'ngens': 2, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 124, 'number_characteristic_subgroups': 8, 'number_conjugacy_classes': 160, 'number_divisions': 144, 'number_normal_subgroups': 12, 'number_subgroup_autclasses': None, 'number_subgroup_classes': None, 'number_subgroups': None, 'old_label': None, 'order': 32440320, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 46335], [3, 28160], [4, 1647360], [5, 405504], [6, 3125760], [8, 7096320], [10, 6082560], [11, 1474560], [12, 4055040], [16, 4055040], [22, 4423680]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': True, 'outer_exponent': 2, 'outer_gen_orders': [2], 'outer_gen_pows': [0], 'outer_gens': [[2658270926353531630298162738952571852502574817130148617, 1113313537531068430985867394269909454530305990192739881]], 'outer_group': '2.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 2, 'outer_permdeg': 2, 'outer_perms': [1], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_2', 'pc_rank': None, 'perfect': False, 'permutation_degree': 44, 'pgroup': 0, 'primary_abelian_invariants': [2, 2], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': False, 'ratrep_stats': [[1, 4], [10, 4], [11, 4], [20, 4], [22, 2], [32, 4], [44, 4], [45, 4], [55, 4], [66, 8], [110, 12], [165, 8], [198, 2], [220, 4], [264, 8], [330, 20], [352, 2], [396, 4], [440, 8], [495, 8], [660, 12], [792, 4], [990, 8], [3168, 2]], 'representations': {'Perm': {'d': 44, 'gens': [1173762232736947426780548442374037783095951697921680006, 2597822231175200806981867153230934918340651343615134662]}}, 'schur_multiplier': [2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2], 'solvability_type': 13, 'solvable': False, 'subgroup_inclusions_known': False, 'subgroup_index_bound': 1584, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_2^{12}.M_{11}', 'transitive_degree': 44, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '2.1', 'all_subgroups_known': True, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 0, 'aut_exponent': 1320, 'aut_gen_orders': [11, 5, 4], 'aut_gens': [[487127904, 1046351545], [340072008, 4112779255], [261497160, 2737270831], [1522120728, 4451102689]], 'aut_group': '7920.a', 'aut_hash': 3986485404724135366, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 7920, 'aut_permdeg': 165, 'aut_perms': [47907267265481101173971549131888055024170340835276204336620451611739360841579006112653262080552815204272619187295379055451158685508512858668699319091564993972770582068119488084100172746282288487961469192940998529314010267016800647142452742566187967368099082404696019935100129094498029468492873627, 48158751562725333351363769146438536282587738777483267801417619937264176889077831424375438477704235650918907367418575536960185709123835668006147095304827012640919166207187393411462519491268281239514017559803859625458531921114524159698583306919194175304195821142288771979200604681416988347185789895, 42260074587349889336386068922998332105058046044980170769717583796681836057761873331767813969192665436114016968793016683371430918116917685520291904376257469210570026627100743268344407053657177692528716523498845640016550904045831050849674263296458388165412655609328422544323403831852435139424199380], 'aut_phi_ratio': 2.0625, 'aut_solvable': False, 'aut_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 165, 1, 2], [3, 440, 1, 1], [4, 990, 1, 2], [5, 1584, 1, 1], [6, 440, 1, 1], [6, 1320, 1, 2], [8, 990, 1, 4], [10, 1584, 1, 1], [11, 720, 1, 2], [22, 720, 1, 2]], 'aut_supersolvable': False, 'aut_tex': 'M_{11}', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 1320, 'autcentquo_group': '7920.a', 'autcentquo_hash': 3986485404724135366, 'autcentquo_nilpotent': False, 'autcentquo_order': 7920, 'autcentquo_solvable': False, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'M_{11}', 'cc_stats': [[1, 1, 1], [2, 1, 1], [2, 165, 2], [3, 440, 1], [4, 990, 2], [5, 1584, 1], [6, 440, 1], [6, 1320, 2], [8, 990, 4], [10, 1584, 1], [11, 720, 2], [22, 720, 2]], 'center_label': '2.1', 'center_order': 2, 'central_product': True, 'central_quotient': '7920.a', 'commutator_count': 1, 'commutator_label': '7920.a', 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '7920.a'], 'composition_length': 2, 'conjugacy_classes_known': True, 'counter': 17, 'cyclic': False, 'derived_length': 1, 'dihedral': False, 'direct_factorization': [['2.1', 1], ['7920.a', 1]], 'direct_product': True, 'div_stats': [[1, 1, 1, 1], [2, 1, 1, 1], [2, 165, 1, 2], [3, 440, 1, 1], [4, 990, 1, 2], [5, 1584, 1, 1], [6, 440, 1, 1], [6, 1320, 1, 2], [8, 990, 2, 2], [10, 1584, 1, 1], [11, 720, 2, 1], [22, 720, 2, 1]], 'element_repr_type': 'Perm', 'elementary': 1, 'eulerian_function': 19434, 'exponent': 1320, 'exponents_of_order': [5, 2, 1, 1], 'factors_of_aut_order': [2, 3, 5, 11], 'factors_of_order': [2, 3, 5, 11], 'faithful_reps': [[10, 0, 2], [10, 1, 1], [11, 1, 1], [16, 0, 2], [44, 1, 1], [45, 1, 1], [55, 1, 1]], 'familial': False, 'frattini_label': '1.1', 'frattini_quotient': '15840.q', 'hash': 8034936889538388295, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 1320, 'inner_gen_orders': [8, 5], 'inner_gens': [[487127904, 2582840449], [5001424686, 1046351545]], 'inner_hash': 3986485404724135366, 'inner_nilpotent': False, 'inner_order': 7920, 'inner_split': True, 'inner_tex': 'M_{11}', 'inner_used': [1, 2], 'irrC_degree': 10, 'irrQ_degree': 10, 'irrQ_dim': 10, 'irrR_degree': 10, 'irrep_stats': [[1, 2], [10, 6], [11, 2], [16, 4], [44, 2], [45, 2], [55, 2]], 'label': '15840.q', 'linC_count': 3, 'linC_degree': 10, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': 10, 'linQ_degree_count': 1, 'linQ_dim': 10, 'linQ_dim_count': 1, 'linR_count': 1, 'linR_degree': 10, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': False, 'name': 'C2*M11', 'ngens': 2, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 20, 'number_characteristic_subgroups': 4, 'number_conjugacy_classes': 20, 'number_divisions': 16, 'number_normal_subgroups': 4, 'number_subgroup_autclasses': 114, 'number_subgroup_classes': 114, 'number_subgroups': 29116, 'old_label': None, 'order': 15840, 'order_factorization_type': 321, 'order_stats': [[1, 1], [2, 331], [3, 440], [4, 1980], [5, 1584], [6, 3080], [8, 3960], [10, 1584], [11, 1440], [22, 1440]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': False, 'outer_exponent': 1, 'outer_gen_orders': [], 'outer_gen_pows': [], 'outer_gens': [], 'outer_group': '1.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 1, 'outer_permdeg': 1, 'outer_perms': [], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_1', 'pc_rank': None, 'perfect': False, 'permutation_degree': 13, 'pgroup': 0, 'primary_abelian_invariants': [2], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 2], [10, 2], [11, 2], [20, 2], [32, 2], [44, 2], [45, 2], [55, 2]], 'representations': {'Perm': {'d': 13, 'gens': [487127904, 1046351545]}}, 'schur_multiplier': [], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2], 'solvability_type': 13, 'solvable': False, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 0, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_2\\times M_{11}', 'transitive_degree': 22, 'wreath_data': None, 'wreath_product': False}