Properties

Label 238392.a.903.a1.a1
Order $ 2^{3} \cdot 3 \cdot 11 $
Index $ 3 \cdot 7 \cdot 43 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{33}:Q_8$
Order: \(264\)\(\medspace = 2^{3} \cdot 3 \cdot 11 \)
Index: \(903\)\(\medspace = 3 \cdot 7 \cdot 43 \)
Exponent: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Generators: $\left(\begin{array}{rr} 30 & 22 \\ 20 & 13 \end{array}\right), \left(\begin{array}{rr} 0 & 33 \\ 13 & 0 \end{array}\right), \left(\begin{array}{rr} 7 & 0 \\ 0 & 7 \end{array}\right), \left(\begin{array}{rr} 30 & 17 \\ 35 & 11 \end{array}\right), \left(\begin{array}{rr} 6 & 0 \\ 0 & 6 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is maximal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_3\times \SL(2,43)$
Order: \(238392\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \cdot 11 \cdot 43 \)
Exponent: \(39732\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 11 \cdot 43 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times \PSL(2,43).C_2$
$\operatorname{Aut}(H)$ $C_2\times D_4\times F_{11}$, of order \(1760\)\(\medspace = 2^{5} \cdot 5 \cdot 11 \)
$W$$D_{22}$, of order \(44\)\(\medspace = 2^{2} \cdot 11 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_{33}:Q_8$
Normal closure:$C_3\times \SL(2,43)$
Core:$C_6$
Minimal over-subgroups:$C_3\times \SL(2,43)$
Maximal under-subgroups:$C_{132}$$C_{11}:C_{12}$$C_{11}:C_{12}$$C_{11}:Q_8$$C_3\times Q_8$

Other information

Number of subgroups in this conjugacy class$903$
Möbius function$-1$
Projective image$\PSL(2,43)$