Properties

Label 238392.a.1806.b1.a2
Order $ 2^{2} \cdot 3 \cdot 11 $
Index $ 2 \cdot 3 \cdot 7 \cdot 43 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{11}:C_{12}$
Order: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Index: \(1806\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 43 \)
Exponent: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Generators: $\left(\begin{array}{rr} 7 & 0 \\ 0 & 7 \end{array}\right), \left(\begin{array}{rr} 28 & 1 \\ 40 & 15 \end{array}\right), \left(\begin{array}{rr} 30 & 17 \\ 35 & 11 \end{array}\right), \left(\begin{array}{rr} 6 & 0 \\ 0 & 6 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Ambient group ($G$) information

Description: $C_3\times \SL(2,43)$
Order: \(238392\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \cdot 11 \cdot 43 \)
Exponent: \(39732\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 11 \cdot 43 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times \PSL(2,43).C_2$
$\operatorname{Aut}(H)$ $C_2^2\times F_{11}$, of order \(440\)\(\medspace = 2^{3} \cdot 5 \cdot 11 \)
$W$$D_{22}$, of order \(44\)\(\medspace = 2^{2} \cdot 11 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_{33}:Q_8$
Normal closure:$C_3\times \SL(2,43)$
Core:$C_6$
Minimal over-subgroups:$C_{33}:Q_8$
Maximal under-subgroups:$C_{66}$$C_{11}:C_4$$C_{12}$
Autjugate subgroups:238392.a.1806.b1.a1

Other information

Number of subgroups in this conjugacy class$903$
Möbius function$0$
Projective image$\PSL(2,43)$