Properties

Label 238392.a.39732.a1.a1
Order $ 2 \cdot 3 $
Index $ 2^{2} \cdot 3 \cdot 7 \cdot 11 \cdot 43 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Index: \(39732\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 11 \cdot 43 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left(\begin{array}{rr} 7 & 0 \\ 0 & 7 \end{array}\right), \left(\begin{array}{rr} 6 & 0 \\ 0 & 6 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the Fitting subgroup, the radical, the socle, and cyclic (hence elementary ($p = 2,3$), hyperelementary, metacyclic, and a Z-group).

Ambient group ($G$) information

Description: $C_3\times \SL(2,43)$
Order: \(238392\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \cdot 11 \cdot 43 \)
Exponent: \(39732\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 11 \cdot 43 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $\PSL(2,43)$
Order: \(39732\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 11 \cdot 43 \)
Exponent: \(19866\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 11 \cdot 43 \)
Automorphism Group: $\PGL(2,43)$, of order \(79464\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \cdot 11 \cdot 43 \)
Outer Automorphisms: $C_2$, of order \(2\)
Nilpotency class: $-1$
Derived length: $0$

The quotient is nonabelian, simple (hence nonsolvable, perfect, quasisimple, and almost simple), and an A-group.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times \PSL(2,43).C_2$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3\times \SL(2,43)$
Normalizer:$C_3\times \SL(2,43)$
Minimal over-subgroups:$C_{258}$$C_{66}$$C_{42}$$C_3\times C_6$$C_{12}$
Maximal under-subgroups:$C_3$$C_2$

Other information

Möbius function$-39732$
Projective image$\PSL(2,43)$