Subgroup ($H$) information
Description: | $C_6$ |
Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
Index: | \(39732\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 11 \cdot 43 \) |
Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
Generators: |
$\left(\begin{array}{rr}
7 & 0 \\
0 & 7
\end{array}\right), \left(\begin{array}{rr}
6 & 0 \\
0 & 6
\end{array}\right)$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the Fitting subgroup, the radical, the socle, and cyclic (hence elementary ($p = 2,3$), hyperelementary, metacyclic, and a Z-group).
Ambient group ($G$) information
Description: | $C_3\times \SL(2,43)$ |
Order: | \(238392\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \cdot 11 \cdot 43 \) |
Exponent: | \(39732\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 11 \cdot 43 \) |
Derived length: | $1$ |
The ambient group is nonabelian and nonsolvable.
Quotient group ($Q$) structure
Description: | $\PSL(2,43)$ |
Order: | \(39732\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 11 \cdot 43 \) |
Exponent: | \(19866\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 11 \cdot 43 \) |
Automorphism Group: | $\PGL(2,43)$, of order \(79464\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \cdot 11 \cdot 43 \) |
Outer Automorphisms: | $C_2$, of order \(2\) |
Nilpotency class: | $-1$ |
Derived length: | $0$ |
The quotient is nonabelian, simple (hence nonsolvable, perfect, quasisimple, and almost simple), and an A-group.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\times \PSL(2,43).C_2$ |
$\operatorname{Aut}(H)$ | $C_2$, of order \(2\) |
$W$ | $C_1$, of order $1$ |
Related subgroups
Centralizer: | $C_3\times \SL(2,43)$ | ||||
Normalizer: | $C_3\times \SL(2,43)$ | ||||
Minimal over-subgroups: | $C_{258}$ | $C_{66}$ | $C_{42}$ | $C_3\times C_6$ | $C_{12}$ |
Maximal under-subgroups: | $C_3$ | $C_2$ |
Other information
Möbius function | $-39732$ |
Projective image | $\PSL(2,43)$ |