Properties

Label 238392.a.5676.a1.a1
Order $ 2 \cdot 3 \cdot 7 $
Index $ 2^{2} \cdot 3 \cdot 11 \cdot 43 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{42}$
Order: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Index: \(5676\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \cdot 43 \)
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Generators: $\left(\begin{array}{rr} 7 & 0 \\ 0 & 7 \end{array}\right), \left(\begin{array}{rr} 40 & 40 \\ 30 & 18 \end{array}\right), \left(\begin{array}{rr} 6 & 0 \\ 0 & 6 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_3\times \SL(2,43)$
Order: \(238392\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \cdot 11 \cdot 43 \)
Exponent: \(39732\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 11 \cdot 43 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times \PSL(2,43).C_2$
$\operatorname{Aut}(H)$ $C_2\times C_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_3\times C_{42}$
Normalizer:$C_{21}:C_{12}$
Normal closure:$C_3\times \SL(2,43)$
Core:$C_6$
Minimal over-subgroups:$C_{129}:C_{14}$$C_3\times C_{42}$$C_7:C_{12}$
Maximal under-subgroups:$C_{21}$$C_{14}$$C_6$

Other information

Number of subgroups in this conjugacy class$946$
Möbius function$0$
Projective image$\PSL(2,43)$