Properties

Label 238392.a.1.a1.a1
Order $ 2^{3} \cdot 3^{2} \cdot 7 \cdot 11 \cdot 43 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times \SL(2,43)$
Order: \(238392\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \cdot 11 \cdot 43 \)
Index: $1$
Exponent: \(39732\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 11 \cdot 43 \)
Generators: $\left(\begin{array}{rr} 42 & 15 \\ 9 & 1 \end{array}\right), \left(\begin{array}{rr} 7 & 0 \\ 0 & 7 \end{array}\right), \left(\begin{array}{rr} 1 & 4 \\ 34 & 13 \end{array}\right), \left(\begin{array}{rr} 6 & 0 \\ 0 & 6 \end{array}\right)$ Copy content Toggle raw display
Derived length: $1$

The subgroup is characteristic (hence normal), a direct factor, nonabelian, a Hall subgroup, and nonsolvable.

Ambient group ($G$) information

Description: $C_3\times \SL(2,43)$
Order: \(238392\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \cdot 11 \cdot 43 \)
Exponent: \(39732\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 11 \cdot 43 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times \PSL(2,43).C_2$
$\operatorname{Aut}(H)$ $C_2\times \PSL(2,43).C_2$
$W$$\PSL(2,43)$, of order \(39732\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 11 \cdot 43 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_3\times \SL(2,43)$
Complements:$C_1$
Maximal under-subgroups:$\SL(2,43)$$C_{129}:C_{42}$$C_{33}:Q_8$$C_{21}:C_{12}$$C_3\times \SL(2,3)$

Other information

Möbius function$1$
Projective image$\PSL(2,43)$