Subgroup ($H$) information
Description: | $C_{129}:C_{42}$ |
Order: | \(5418\)\(\medspace = 2 \cdot 3^{2} \cdot 7 \cdot 43 \) |
Index: | \(44\)\(\medspace = 2^{2} \cdot 11 \) |
Exponent: | \(1806\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 43 \) |
Generators: |
$\left(\begin{array}{rr}
14 & 10 \\
29 & 30
\end{array}\right), \left(\begin{array}{rr}
7 & 0 \\
0 & 7
\end{array}\right), \left(\begin{array}{rr}
0 & 32 \\
24 & 34
\end{array}\right), \left(\begin{array}{rr}
40 & 24 \\
2 & 15
\end{array}\right), \left(\begin{array}{rr}
6 & 0 \\
0 & 6
\end{array}\right)$
|
Derived length: | $2$ |
The subgroup is maximal, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.
Ambient group ($G$) information
Description: | $C_3\times \SL(2,43)$ |
Order: | \(238392\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \cdot 11 \cdot 43 \) |
Exponent: | \(39732\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 11 \cdot 43 \) |
Derived length: | $1$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\times \PSL(2,43).C_2$ |
$\operatorname{Aut}(H)$ | $C_{43}:(C_{42}\times S_3)$ |
$W$ | $C_{43}:C_{21}$, of order \(903\)\(\medspace = 3 \cdot 7 \cdot 43 \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $44$ |
Möbius function | $-1$ |
Projective image | $\PSL(2,43)$ |