Properties

Label 238392.a.132.b1.a1
Order $ 2 \cdot 3 \cdot 7 \cdot 43 $
Index $ 2^{2} \cdot 3 \cdot 11 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{43}:C_{42}$
Order: \(1806\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 43 \)
Index: \(132\)\(\medspace = 2^{2} \cdot 3 \cdot 11 \)
Exponent: \(1806\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 43 \)
Generators: $\left(\begin{array}{rr} 0 & 20 \\ 15 & 32 \end{array}\right), \left(\begin{array}{rr} 21 & 4 \\ 29 & 24 \end{array}\right), \left(\begin{array}{rr} 14 & 10 \\ 29 & 30 \end{array}\right), \left(\begin{array}{rr} 42 & 0 \\ 0 & 42 \end{array}\right)$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian and a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group).

Ambient group ($G$) information

Description: $C_3\times \SL(2,43)$
Order: \(238392\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \cdot 11 \cdot 43 \)
Exponent: \(39732\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \cdot 11 \cdot 43 \)
Derived length:$1$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times \PSL(2,43).C_2$
$\operatorname{Aut}(H)$ $F_{43}$, of order \(1806\)\(\medspace = 2 \cdot 3 \cdot 7 \cdot 43 \)
$W$$C_{43}:C_{21}$, of order \(903\)\(\medspace = 3 \cdot 7 \cdot 43 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_{129}:C_{42}$
Normal closure:$\SL(2,43)$
Core:$C_2$
Minimal over-subgroups:$\SL(2,43)$$C_{129}:C_{42}$
Maximal under-subgroups:$C_{43}:C_{21}$$C_{43}:C_{14}$$C_{43}:C_6$$C_{42}$

Other information

Number of subgroups in this conjugacy class$44$
Möbius function$1$
Projective image not computed