Properties

Label 1679616.is.18.X
Order $ 2^{7} \cdot 3^{6} $
Index $ 2 \cdot 3^{2} $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^4.\SOPlus(4,2)$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Index: \(18\)\(\medspace = 2 \cdot 3^{2} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Generators: $\langle(20,23)(22,25), (1,2,4,8,14,17,3,5,10,11,16,13)(6,9,12,7)(15,18)(19,20,21,23,24,25,26,22) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is nonabelian and solvable. Whether it is monomial has not been computed.

Ambient group ($G$) information

Description: $C_3^6.S_4^2:C_2^2$
Order: \(1679616\)\(\medspace = 2^{8} \cdot 3^{8} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^4.C_3^4.(C_6\times D_4).C_2$
$\operatorname{Aut}(H)$ $C_3^3.A_4^2.C_6^2.C_2$
$W$$C_6^4.\SOPlus(4,2)$, of order \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_6^4.\SOPlus(4,2)$
Normal closure:$C_3^6.S_4\wr C_2$
Core:$C_6^4$

Other information

Number of subgroups in this autjugacy class$36$
Number of conjugacy classes in this autjugacy class$2$
Möbius function not computed
Projective image$C_3^6.S_4^2:C_2^2$