Properties

Label 93312.fs
Order \( 2^{7} \cdot 3^{6} \)
Exponent \( 2^{3} \cdot 3^{2} \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{7} \cdot 3^{7} \)
$\card{\mathrm{Out}(G)}$ \( 3 \)
Perm deg. $26$
Trans deg. $36$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 26 | (1,3)(2,5)(4,8)(6,10)(9,13)(12,16)(20,22)(21,23)(24,26), (1,2,4,7,3,6,8,11,15,16,17,18)(5,9,12,13)(10,14)(19,20,21,22,23,24,25,26) >;
 
Copy content gap:G := Group( (1,3)(2,5)(4,8)(6,10)(9,13)(12,16)(20,22)(21,23)(24,26), (1,2,4,7,3,6,8,11,15,16,17,18)(5,9,12,13)(10,14)(19,20,21,22,23,24,25,26) );
 
Copy content sage:G = PermutationGroup(['(1,3)(2,5)(4,8)(6,10)(9,13)(12,16)(20,22)(21,23)(24,26)', '(1,2,4,7,3,6,8,11,15,16,17,18)(5,9,12,13)(10,14)(19,20,21,22,23,24,25,26)'])
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(671989764071074044513394503061920584257971264704498636148889021689545379754044233844615147073053886983023916571023927276404956865976671358124622392069982251720801787183814144554002696476212730590774786094701472161029641763366771771865804384672333718634022553044,93312)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.13;
 

Group information

Description:$C_6^4.\SOPlus(4,2)$
Order: \(93312\)\(\medspace = 2^{7} \cdot 3^{6} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_3^3.A_4^2.C_6^2.C_2$, of order \(279936\)\(\medspace = 2^{7} \cdot 3^{7} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 7, $C_3$ x 6
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$4$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and solvable. Whether it is monomial has not been computed.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 8 9 12 18 24
Elements 1 1851 1376 6804 19776 3888 5184 31104 15552 7776 93312
Conjugacy classes   1 6 12 6 54 1 3 19 3 2 107
Divisions 1 6 12 6 50 1 2 16 2 1 97
Autjugacy classes 1 6 8 6 42 1 3 17 3 2 89

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 4 6 8 9 12 18 24 36 72 144
Irr. complex chars.   4 5 8 8 1 4 24 9 19 14 11 0 107
Irr. rational chars. 4 3 5 6 3 4 25 5 19 12 9 2 97

Minimal presentations

Permutation degree:$26$
Transitive degree:$36$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 12 12 12
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Presentation: ${\langle a, b, c, d, e, f, g, h \mid a^{2}=d^{9}=e^{6}=f^{6}=g^{2}=h^{2}= \!\cdots\! \rangle}$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([13, 2, 2, 3, 2, 3, 3, 3, 2, 3, 2, 3, 2, 2, 1222053, 66, 3125618, 227476, 1567179, 1025560, 660065, 146, 5648764, 2809577, 1295610, 42176, 2697557, 1117602, 953347, 290204, 100677, 304, 1415238, 19675, 3321, 1190599, 4279412, 350110, 366035, 132984, 306, 2148128, 105347, 8484, 27451, 7862409, 3538102, 926688, 221191, 112394, 386, 61786, 1111991, 11220779, 1061474, 315963, 155920, 985633, 848769, 95887, 136967]); a,b,c,d,e,f,g,h := Explode([G.1, G.2, G.4, G.6, G.8, G.10, G.12, G.13]); AssignNames(~G, ["a", "b", "b2", "c", "c2", "d", "d3", "e", "e2", "f", "f2", "g", "h"]);
 
Copy content gap:G := PcGroupCode(671989764071074044513394503061920584257971264704498636148889021689545379754044233844615147073053886983023916571023927276404956865976671358124622392069982251720801787183814144554002696476212730590774786094701472161029641763366771771865804384672333718634022553044,93312); a := G.1; b := G.2; c := G.4; d := G.6; e := G.8; f := G.10; g := G.12; h := G.13;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(671989764071074044513394503061920584257971264704498636148889021689545379754044233844615147073053886983023916571023927276404956865976671358124622392069982251720801787183814144554002696476212730590774786094701472161029641763366771771865804384672333718634022553044,93312)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.13;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(671989764071074044513394503061920584257971264704498636148889021689545379754044233844615147073053886983023916571023927276404956865976671358124622392069982251720801787183814144554002696476212730590774786094701472161029641763366771771865804384672333718634022553044,93312)'); a = G.1; b = G.2; c = G.4; d = G.6; e = G.8; f = G.10; g = G.12; h = G.13;
 
Permutation group:Degree $26$ $\langle(1,3)(2,5)(4,8)(6,10)(9,13)(12,16)(20,22)(21,23)(24,26), (1,2,4,7,3,6,8,11,15,16,17,18)(5,9,12,13)(10,14)(19,20,21,22,23,24,25,26)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 26 | (1,3)(2,5)(4,8)(6,10)(9,13)(12,16)(20,22)(21,23)(24,26), (1,2,4,7,3,6,8,11,15,16,17,18)(5,9,12,13)(10,14)(19,20,21,22,23,24,25,26) >;
 
Copy content gap:G := Group( (1,3)(2,5)(4,8)(6,10)(9,13)(12,16)(20,22)(21,23)(24,26), (1,2,4,7,3,6,8,11,15,16,17,18)(5,9,12,13)(10,14)(19,20,21,22,23,24,25,26) );
 
Copy content sage:G = PermutationGroup(['(1,3)(2,5)(4,8)(6,10)(9,13)(12,16)(20,22)(21,23)(24,26)', '(1,2,4,7,3,6,8,11,15,16,17,18)(5,9,12,13)(10,14)(19,20,21,22,23,24,25,26)'])
 
Transitive group: 36T19592 36T19593 36T19594 36T19595 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: $(C_6^4.S_3^2)$ $\,\rtimes\,$ $C_2$ $(C_3^4.A_4^2:C_4)$ $\,\rtimes\,$ $C_2$ $((C_2\times C_6^3).S_3^2)$ $\,\rtimes\,$ $S_3$ $C_2^4$ $\,\rtimes\,$ $(C_3^4.\SOPlus(4,2))$ more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $C_3^4$ . $(S_4\wr C_2)$ $C_6^4$ . $\SOPlus(4,2)$ $C_3^3$ . $(C_3.S_4\wr C_2)$ $(C_3^3.A_4^2.C_2)$ . $D_6$ all 10

Elements of the group are displayed as permutations of degree 26.

Homology

Abelianization: $C_{2}^{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 1367914 subgroups in 6236 conjugacy classes, 19 normal, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $C_6^4.\SOPlus(4,2)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_3^3.A_4^2.C_6$ $G/G' \simeq$ $C_2^2$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_3^3$ $G/\Phi \simeq$ $(C_3\times A_4^2):D_4$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_6^4$ $G/\operatorname{Fit} \simeq$ $\SOPlus(4,2)$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_6^4.\SOPlus(4,2)$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_2^2\times C_6^2$ $G/\operatorname{soc} \simeq$ $C_3^2.\SOPlus(4,2)$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2\wr D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^3.C_3^3$

Subgroup diagram and profile

Series

Derived series $C_6^4.\SOPlus(4,2)$ $\rhd$ $C_6^4.\SOPlus(4,2)$ $\rhd$ $C_3^3.A_4^2.C_6$ $\rhd$ $C_3^3.A_4^2.C_6$ $\rhd$ $C_3^3.A_4^2$ $\rhd$ $C_3^3.A_4^2$ $\rhd$ $C_2\times C_6^3$ $\rhd$ $C_2\times C_6^3$ $\rhd$ $C_1$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_6^4.\SOPlus(4,2)$ $\rhd$ $C_6^4.\SOPlus(4,2)$ $\rhd$ $C_3^3.A_4^2.D_6$ $\rhd$ $C_3^3.A_4^2.D_6$ $\rhd$ $C_3^3.A_4^2.C_6$ $\rhd$ $C_3^3.A_4^2.C_6$ $\rhd$ $C_6^4.C_3^2$ $\rhd$ $C_6^4.C_3^2$ $\rhd$ $C_3^3.A_4^2$ $\rhd$ $C_3^3.A_4^2$ $\rhd$ $C_2\times C_6^3$ $\rhd$ $C_2\times C_6^3$ $\rhd$ $C_3^3$ $\rhd$ $C_3^3$ $\rhd$ $C_3^2$ $\rhd$ $C_3^2$ $\rhd$ $C_1$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_6^4.\SOPlus(4,2)$ $\rhd$ $C_6^4.\SOPlus(4,2)$ $\rhd$ $C_3^3.A_4^2.C_6$ $\rhd$ $C_3^3.A_4^2.C_6$ $\rhd$ $C_6^4.C_3^2$ $\rhd$ $C_6^4.C_3^2$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 2 larger groups in the database.

This group is a maximal quotient of 7 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $107 \times 107$ character table. Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $97 \times 97$ rational character table.