Show commands: Magma
Group invariants
Abstract group: | $C_6^4.\SOPlus(4,2)$ |
| |
Order: | $93312=2^{7} \cdot 3^{6}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $36$ |
| |
Transitive number $t$: | $19593$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,32,15,19,9,29,3,36,18,23,8,25,5,33,13,21,11,28)(2,31,16,20,10,30,4,35,17,24,7,26,6,34,14,22,12,27)$, $(1,12,3,10,5,7)(2,11,4,9,6,8)(13,14)(15,16)(17,18)(19,26,35,20,25,36)(21,27,31,24,29,33)(22,28,32,23,30,34)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $8$: $D_{4}$ $12$: $D_{6}$ $24$: $(C_6\times C_2):C_2$ $72$: $C_3^2:D_4$ $216$: 12T116, 18T105 $648$: 18T215 $1152$: $S_4\wr C_2$ $3456$: 24T7222, 36T4431 $5832$: 18T505 $10368$: 36T8546 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: None
Degree 4: None
Degree 6: $C_3^2:D_4$
Degree 9: None
Degree 12: 12T202
Degree 18: 18T505
Low degree siblings
36T19592 x 3, 36T19593 x 2, 36T19594 x 3, 36T19595 x 3Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Conjugacy classes not computed
Character table
107 x 107 character table
Regular extensions
Data not computed