Properties

Label 1679616.is.1296.A
Order $ 2^{4} \cdot 3^{4} $
Index $ 2^{4} \cdot 3^{4} $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6^4$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Index: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\langle(3,4,16)(7,9,18), (19,24)(21,26), (5,13,8)(6,15,12), (20,23)(22,25), (20,25)(22,23), (19,26)(21,24), (1,10,14)(7,18,9), (2,11,17)(5,8,13)\rangle$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal) and abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group). Whether it is a direct factor or a semidirect factor has not been computed.

Ambient group ($G$) information

Description: $C_3^6.S_4^2:C_2^2$
Order: \(1679616\)\(\medspace = 2^{8} \cdot 3^{8} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_3^4:(C_2\times D_4)$
Order: \(1296\)\(\medspace = 2^{4} \cdot 3^{4} \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Automorphism Group: $S_3\wr D_4:C_2$, of order \(20736\)\(\medspace = 2^{8} \cdot 3^{4} \)
Outer Automorphisms: $C_2\times D_4$, of order \(16\)\(\medspace = 2^{4} \)
Nilpotency class: $-1$
Derived length: $3$

The quotient is nonabelian, solvable, and rational. Whether it is monomial has not been computed.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^4.C_3^4.(C_6\times D_4).C_2$
$\operatorname{Aut}(H)$ $A_8\times C_2.\PSL(4,3).C_2$
$W$$S_3^2:C_2^2$, of order \(144\)\(\medspace = 2^{4} \cdot 3^{2} \)

Related subgroups

Centralizer:$C_3^2\times C_6^4$
Normalizer:$C_3^6.S_4^2:C_2^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^6.S_4^2:C_2^2$