Properties

Label 1679616.is.1.a1
Order $ 2^{8} \cdot 3^{8} $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3^6.S_4^2:C_2^2$
Order: \(1679616\)\(\medspace = 2^{8} \cdot 3^{8} \)
Index: $1$
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Generators: $\langle(2,5,12,17,8,6,11,13,15)(19,21)(22,25,23)(24,26), (20,23)(22,25), (20,25) \!\cdots\! \rangle$ Copy content Toggle raw display
Derived length: $4$

The subgroup is the radical (hence characteristic, normal, and solvable), a semidirect factor, nonabelian, and a Hall subgroup. Whether it is a direct factor or monomial has not been computed.

Ambient group ($G$) information

Description: $C_3^6.S_4^2:C_2^2$
Order: \(1679616\)\(\medspace = 2^{8} \cdot 3^{8} \)
Exponent: \(72\)\(\medspace = 2^{3} \cdot 3^{2} \)
Derived length:$4$

The ambient group is nonabelian and solvable. Whether it is monomial has not been computed.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_6^4.C_3^4.(C_6\times D_4).C_2$
$\operatorname{Aut}(H)$ $C_6^4.C_3^4.(C_6\times D_4).C_2$
$W$$C_3^6.S_4^2:C_2^2$, of order \(1679616\)\(\medspace = 2^{8} \cdot 3^{8} \)

Related subgroups

Centralizer: not computed
Normalizer:$C_3^6.S_4^2:C_2^2$

Other information

Number of conjugacy classes in this autjugacy class$1$
Möbius function not computed
Projective image$C_3^6.S_4^2:C_2^2$