-
gps_subgroup_search • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'ambient': '1679616.is', 'ambient_counter': 227, 'ambient_order': 1679616, 'ambient_tex': 'C_3^6.S_4^2:C_2^2', 'central': False, 'central_factor': False, 'centralizer_order': None, 'characteristic': False, 'core_order': 1296, 'counter': 96, 'cyclic': False, 'direct': None, 'hall': 0, 'label': '1679616.is.18.X', 'maximal': False, 'maximal_normal': False, 'metabelian': False, 'metacyclic': False, 'minimal': False, 'minimal_normal': False, 'nilpotent': False, 'normal': False, 'old_label': '18.x1', 'outer_equivalence': True, 'perfect': False, 'proper': True, 'quotient': None, 'quotient_Agroup': None, 'quotient_abelian': None, 'quotient_cyclic': None, 'quotient_hash': None, 'quotient_metabelian': None, 'quotient_nilpotent': None, 'quotient_order': 18, 'quotient_simple': None, 'quotient_solvable': None, 'quotient_supersolvable': None, 'quotient_tex': None, 'simple': False, 'solvable': True, 'special_labels': [], 'split': None, 'standard_generators': False, 'stem': False, 'subgroup': '93312.fs', 'subgroup_hash': 7692347811128442539, 'subgroup_order': 93312, 'subgroup_tex': 'C_6^4.\\SOPlus(4,2)', 'supersolvable': False, 'sylow': 0}
-
gps_subgroup_data • Show schema
Hide schema
{'ambient': '1679616.is', 'aut_centralizer_order': None, 'aut_label': '18.X', 'aut_quo_index': None, 'aut_stab_index': None, 'aut_weyl_group': None, 'aut_weyl_index': None, 'centralizer': None, 'complements': None, 'conjugacy_class_count': 2, 'contained_in': None, 'contains': None, 'core': '1296.A', 'coset_action_label': None, 'count': 36, 'diagramx': [1474, -1, 2020, -1], 'generators': [2354, 16808572352701911923372409, 3776, 36543, 241525335571641070310150630, 237182770174237525569292630, 14072318322978746839760, 140248369684386911255172480, 109543852335007595270719, 430867701484346649600, 5611221138701837664230400, 26581, 39393930302280423031680], 'label': '1679616.is.18.X', 'mobius_quo': None, 'mobius_sub': None, 'normal_closure': '2.E', 'normal_contained_in': None, 'normal_contains': None, 'normalizer': '18.X', 'old_label': '18.x1', 'projective_image': '1679616.is', 'quotient_action_image': None, 'quotient_action_kernel': None, 'quotient_action_kernel_order': None, 'quotient_fusion': None, 'short_label': '18.X', 'subgroup_fusion': None, 'weyl_group': '93312.fs'}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '4.2', 'all_subgroups_known': False, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 4, 'aut_exponent': 72, 'aut_gen_orders': [18, 24, 9], 'aut_gens': [[32888271271095440859860885, 16833246703680637935498393], [189524970332637388171008292, 175803080774983496484640727], [133064172219573886329935296, 87235185485155208537039293], [31643178013307604502890933, 23075757345440851553814819]], 'aut_group': None, 'aut_hash': 2531344867876645364, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 279936, 'aut_permdeg': 540, 'aut_perms': [4732184307346509394118596723594091590691242011688565282291476156617198508123828811740935360489613390757618592492588004894172102424220373187364730738159992826548864100621627513555697537938481873780132011200547418640372246932122330304017101379188959686282912761169814785741163813280388114906252926036956642212915567742144228445510266572963448238672927071325963051016219202698663293845335189523331722714178805208426090599267205456593145096485790026440718302992875852442839846917901515938715086589340591936478852383756706529416423058313485633077119911486768638932315942247359021241133453869876396323861016025066939640388769959419170680725314891965106737511082893926010269696649617191957443518497470099864812284259303441949705494878527054966613239015294066895390736541026924366100483442555165865744912175497751383942654544170642452821537011641305318161311429483692421134294913938513967535841573908136938402763370084817656331529574751444317458282514757024116505024645660439942293359483549552309099077895770236712946961057729064516698676647197966573121810879466540923448872106045374163494269436608428803417024968453219523173533045468592645041409879190271959312357657215153218165138376825633915313952389757384109261523801759924260105674630666780072611, 2435934813927160859242830397772212221694028846745060429199207831901461553296409932822699416179565466646180006901262446782525876240615589263199689354785512385521777900076267673613612427030086492972405200067046721795937912933963499329205598031204273413012809205121257509315890896296383148782996281268918358145731141835619809306135771407916975034025783598907097801240104432014524284119113792711443676330358078659754934553579578792382064535299560357102512539290877918235272997138906715759752075398173636308813098522255544167958681518433133355560049718330837703553758175457429023764389788826478387038810856534446367890277424838862024607649132239228752897683823043094464777924013760321550006035187861378361115191243464071547167481227147794998260191840217849475955931810785491347229042943810775851376799206649376603743904468521016608515243576584003174065625449849075217475637301599188229593387929214657093862313227902487941452853299910557206086310411113372541453494745697801067078360237768850361107221474872645917918553651706090603383916746441512525269844638497427480241426444529482813462626680186655756262831180396238915439602309058323188875598362311104572731114683903820056501368953244116708782268474492735323348003687334094229610970675774396525121, 1143651052457037235369586238017709113223378391507929454826142019239363846940873406324568975494153670103296113537973026526833123583978526990784810446462867320762066089325701560670452389692093810260574390661749420900523569310923573789624360766694713326047776834525463304558390575015023353605918369144251442269767968863537913304600019442302801084266857726169310012986702773667455362529584108874733932644426465167315718105313938531698609708977541224656037898785703633308224156414420066307523091983272012105607102232045366301919789941663012691157460637836741417619174824691821185452218115628988910434033501948454599538190990380734820308696329287706314787390785840796630852569667374172592965774604253268105800743918031246136149814209079427625092954673485955533540312249741738026123482963665122313195538232201409003809441404339500531842292166346757419611637616708488468607346297268336030561831728221240956779570452332995080830195481255444967033640173395772127084361752872985154765759668755755058686308583482317899091662032123557606429189556265788726558962330976827995269895622655627806777145812442801129280390736404959715446794086953226363285690870706218001871580808225858423487969489958911156265781285833943686456757836532339522615174820227749550801], 'aut_phi_ratio': 9.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 6, 1, 1], [2, 9, 1, 1], [2, 216, 1, 1], [2, 324, 1, 2], [2, 972, 1, 1], [3, 4, 1, 2], [3, 12, 1, 1], [3, 18, 1, 2], [3, 24, 1, 1], [3, 144, 3, 1], [3, 288, 3, 1], [4, 324, 1, 2], [4, 648, 1, 2], [4, 972, 1, 1], [4, 3888, 1, 1], [6, 12, 1, 3], [6, 18, 1, 2], [6, 24, 1, 5], [6, 36, 1, 8], [6, 72, 1, 10], [6, 144, 3, 1], [6, 288, 3, 4], [6, 432, 1, 1], [6, 648, 1, 5], [6, 1296, 1, 1], [6, 1944, 1, 1], [6, 2592, 3, 1], [8, 3888, 1, 1], [9, 1728, 1, 3], [12, 648, 1, 5], [12, 1296, 1, 8], [12, 1944, 1, 1], [12, 2592, 3, 1], [12, 3888, 1, 2], [18, 5184, 1, 3], [24, 3888, 1, 2]], 'aut_supersolvable': False, 'aut_tex': 'C_3^3.A_4^2.C_6^2.C_2', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 72, 'autcentquo_group': None, 'autcentquo_hash': 2531344867876645364, 'autcentquo_nilpotent': False, 'autcentquo_order': 279936, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_3^3.A_4^2.C_6^2.C_2', 'cc_stats': [[1, 1, 1], [2, 6, 1], [2, 9, 1], [2, 216, 1], [2, 324, 2], [2, 972, 1], [3, 4, 2], [3, 12, 1], [3, 18, 2], [3, 24, 1], [3, 144, 3], [3, 288, 3], [4, 324, 2], [4, 648, 2], [4, 972, 1], [4, 3888, 1], [6, 12, 3], [6, 18, 2], [6, 24, 5], [6, 36, 8], [6, 72, 10], [6, 144, 3], [6, 288, 12], [6, 432, 1], [6, 648, 5], [6, 1296, 1], [6, 1944, 1], [6, 2592, 3], [8, 3888, 1], [9, 1728, 3], [12, 648, 5], [12, 1296, 8], [12, 1944, 1], [12, 2592, 3], [12, 3888, 2], [18, 5184, 3], [24, 3888, 2]], 'center_label': '1.1', 'center_order': 1, 'central_product': False, 'central_quotient': '93312.fs', 'commutator_count': 1, 'commutator_label': None, 'complements_known': True, 'complete': False, 'complex_characters_known': True, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '3.1', '3.1', '3.1', '3.1'], 'composition_length': 13, 'conjugacy_classes_known': True, 'counter': 149, 'cyclic': False, 'derived_length': 4, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 6, 1, 1], [2, 9, 1, 1], [2, 216, 1, 1], [2, 324, 1, 2], [2, 972, 1, 1], [3, 4, 1, 2], [3, 12, 1, 1], [3, 18, 1, 2], [3, 24, 1, 1], [3, 144, 1, 3], [3, 288, 1, 3], [4, 324, 1, 2], [4, 648, 1, 2], [4, 972, 1, 1], [4, 3888, 1, 1], [6, 12, 1, 3], [6, 18, 1, 2], [6, 24, 1, 3], [6, 24, 2, 1], [6, 36, 1, 6], [6, 36, 2, 1], [6, 72, 1, 8], [6, 72, 2, 1], [6, 144, 1, 3], [6, 288, 1, 12], [6, 432, 1, 1], [6, 648, 1, 3], [6, 648, 2, 1], [6, 1296, 1, 1], [6, 1944, 1, 1], [6, 2592, 1, 3], [8, 3888, 1, 1], [9, 1728, 1, 1], [9, 1728, 2, 1], [12, 648, 1, 3], [12, 648, 2, 1], [12, 1296, 1, 6], [12, 1296, 2, 1], [12, 1944, 1, 1], [12, 2592, 1, 3], [12, 3888, 2, 1], [18, 5184, 1, 1], [18, 5184, 2, 1], [24, 3888, 2, 1]], 'element_repr_type': 'Perm', 'elementary': 1, 'eulerian_function': None, 'exponent': 72, 'exponents_of_order': [7, 6], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[12, 1, 6], [24, 1, 12], [36, 0, 4], [36, 1, 6], [72, 0, 4], [72, 1, 7]], 'familial': False, 'frattini_label': '27.5', 'frattini_quotient': '3456.da', 'hash': 7692347811128442539, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 72, 'inner_gen_orders': [2, 24], 'inner_gens': [[32888271271095440859860885, 146538548916327473799375294], [2513623910609778012780200, 16833246703680637935498393]], 'inner_hash': 7692347811128442539, 'inner_nilpotent': False, 'inner_order': 93312, 'inner_split': True, 'inner_tex': 'C_6^4.\\SOPlus(4,2)', 'inner_used': [1, 2], 'irrC_degree': 12, 'irrQ_degree': 12, 'irrQ_dim': 12, 'irrR_degree': 12, 'irrep_stats': [[1, 4], [2, 5], [4, 8], [6, 8], [8, 1], [9, 4], [12, 24], [18, 9], [24, 19], [36, 14], [72, 11]], 'label': '93312.fs', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': None, 'name': 'C6^4.SO+(4,2)', 'ngens': 2, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 89, 'number_characteristic_subgroups': 19, 'number_conjugacy_classes': 107, 'number_divisions': 97, 'number_normal_subgroups': 19, 'number_subgroup_autclasses': 4808, 'number_subgroup_classes': 6236, 'number_subgroups': 1367914, 'old_label': None, 'order': 93312, 'order_factorization_type': 33, 'order_stats': [[1, 1], [2, 1851], [3, 1376], [4, 6804], [6, 19776], [8, 3888], [9, 5184], [12, 31104], [18, 15552], [24, 7776]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': True, 'outer_exponent': 3, 'outer_gen_orders': [3], 'outer_gen_pows': [0], 'outer_gens': [[32888271271095440859860885, 24926305958918107273923993]], 'outer_group': '3.1', 'outer_hash': 1, 'outer_nilpotent': True, 'outer_order': 3, 'outer_permdeg': 3, 'outer_perms': [3], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_3', 'pc_rank': None, 'perfect': False, 'permutation_degree': 26, 'pgroup': 0, 'primary_abelian_invariants': [2, 2], 'quasisimple': False, 'rank': 2, 'rational': False, 'rational_characters_known': True, 'ratrep_stats': [[1, 4], [2, 3], [4, 5], [6, 6], [8, 3], [9, 4], [12, 25], [18, 5], [24, 19], [36, 12], [72, 9], [144, 2]], 'representations': {'PC': {'code': '671989764071074044513394503061920584257971264704498636148889021689545379754044233844615147073053886983023916571023927276404956865976671358124622392069982251720801787183814144554002696476212730590774786094701472161029641763366771771865804384672333718634022553044', 'gens': [1, 2, 4, 6, 8, 10, 12, 13], 'pres': [13, 2, 2, 3, 2, 3, 3, 3, 2, 3, 2, 3, 2, 2, 1222053, 66, 3125618, 227476, 1567179, 1025560, 660065, 146, 5648764, 2809577, 1295610, 42176, 2697557, 1117602, 953347, 290204, 100677, 304, 1415238, 19675, 3321, 1190599, 4279412, 350110, 366035, 132984, 306, 2148128, 105347, 8484, 27451, 7862409, 3538102, 926688, 221191, 112394, 386, 61786, 1111991, 11220779, 1061474, 315963, 155920, 985633, 848769, 95887, 136967]}, 'Perm': {'d': 26, 'gens': [32888271271095440859860885, 16833246703680637935498393]}}, 'schur_multiplier': [2, 2], 'semidirect_product': True, 'simple': False, 'smith_abelian_invariants': [2, 2], 'solvability_type': 17, 'solvable': True, 'subgroup_inclusions_known': True, 'subgroup_index_bound': 243, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_6^4.\\SOPlus(4,2)', 'transitive_degree': 36, 'wreath_data': None, 'wreath_product': False}
-
gps_groups • Show schema
Hide schema
{'Agroup': False, 'Zgroup': False, 'abelian': False, 'abelian_quotient': '8.5', 'all_subgroups_known': False, 'almost_simple': False, 'aut_abelian': False, 'aut_cyclic': False, 'aut_derived_length': 4, 'aut_exponent': 72, 'aut_gen_orders': [12, 12, 6, 24], 'aut_gens': [[2591145499384530926975722, 16808572718369597977868409, 32993114507303845598335158], [49175249239298054686838790, 191759646647973187259061670, 54611826069805800785351819], [38132262902224579798509318, 20563136813527199239242380, 133404858441103239759690491], [99957967333531781150035862, 219184960343512052025571587, 240336571420636208909796263], [98858482957421628810537593, 176242572965079230066563604, 37434346105318601534295515]], 'aut_group': None, 'aut_hash': 447151837324768108, 'aut_nilpotency_class': -1, 'aut_nilpotent': False, 'aut_order': 10077696, 'aut_permdeg': 1404, 'aut_perms': [4703166868725586656397128194428298025873489490546996327941749505466934714771414070063079512621914047228927897606007167529641936718854095964103104282395499220422636744936685439957103238786795896215385165017722191892859237836081583953072162427770778119938219648972247464337557912997840537740763280130233031501997659196303310122391366087871082451549632147276359997115378085651641456107293004914838682424812537072189469349882853559982926854873103405762777221731258599241353211377632871842149589203445511261839303672130428892177515211167408408609779679766977911312844316383369960558694652484009362644239938933087918962846395995678457299418977218088818087753603945402089702370770437556745156651324763972394541709156829559923792269351862993687558268066989665536988862233707413294623860776818815879442513690502229963411002905417771012173409232603363249625541430770907371556162739151707007025454593420209835922056430608641883795335048068405734345302856342722921738310087024077410803563259289455783089046317549351571958397701581156805907699065687477345513707649722604548460323374444256844632922712252859809182517047676058087326644366026261571668545989406625132866718749644108185615838224608216070096064001069750127343189682498520401082368076968143838026005911162608393881655067063927098599676001949947360224793866782105683071116306257992425545014924218601631559187675644521190077933921161069305541295270201281468025825570437701869386442379955768276971151721665683105056095881840931837514690951891809402139338752489992428034500576833814133874782352622284510923693530089471139295364376932192429729920969967569136277802957598588421683985471581017048969175208583835655508915909736189636746805590484938681623476749956754334676526155251451806292916746273038485650516843940995256065719496190372068075312997531219328395263884522192379361065860594379025989233958748320646988971414787872200537382146434574203348202803364178091229382301671706648104786260191338716411208786067503663724702501198763126098621199210611066197325538037757006689329566854636977778192660039421209766056647741510672336509055755733370232345832621665884908196942841103964042128804415401021521036364853536039230687335580795945591951338748520870958694851785053590912227143914619818227862681792536208571506900064890427800931439809700251141799424581823308145730250969590259445877305963610500578210300959151622912686928448539209207306244222392725676123626567777958416342800724323284721386931659314242076064418422727955489046719626998363646245319034648438242282969700051778487395908894210883146584105974540048647470283577533010242036560607899389753578194845079474395752769929458052624669675806682116381605291381213511026010157457747673083625503059684088412755424825028923213415501783696535765541521163498226398912799785485243807318950659447107600312424301428163330324919433461010190733548519994839267589409326334150953806743968445347742731653187130282040976572256197772386223080762519889405158812092310456440831863359525480897217927443370332485393017610106218859406796074393885396000733527393158049689814912217968178697083611232093878769508933870886589697053008769617386603530984993797000898522137581945837001634815991323295286319066267782842258869189079645814624243136386348127822102162752178101261101960832819382906731093851554459461915664947712741035998737465108137291032780501197590052904603190149527931449288561913968206181305188559560904872581324425663416317851260077225283669059587229662857889625649683038847769496405061515486332103818935750432374032408491260374594775707844082173659993153467851032585916707754382547565290932187410275074033969914798957823039944313662663176304632851158524835474876690365973748141338564024467494738105669372474493139541027638611752550457736231663004673960637489292261508962225370041520339481368879801045239891862079006892138169, 11192218908493980599189805157942618799543009958291136664896413664647241716697591269613562623861685295184470362058054749406930379319406839961750526009197652291265024503440666652083308993783671561597230989583684325903955802274147519928399880352113477102910050478272171078463566469626956200067409613545731325602267712138805734848249884419778833581170866213311716791834766657749795818411258603587301259829185310874302819682253814180409402654414194014180195528162963484384818642131616829337137410063357727664061420115227714170782713997706665069355336015298030619947054840964671074435608916387413418185742278326297173004061684592164606830708235358705936659785581333046010577528491307151114650546573010410722665869150604841412220218075431896386541308561936930603042892054577642363604456137535972559768456172098837429363224889746845931184896176472512431682702996164237623441564013696050248540762647092231198144643532366260714966630296364183100212244096614592285743214277807708458231576168634078642441568255980547949080213338310617962850398435363647787251502229718432957264769253706552360395106239765708215313276760554508974324296737833646368772498658700041777541970764334626119027428121919825102209485130331052399354142374330831408163431740050119573686311957334277246334541396668204425309805524159642352414716873788547686418726277025679107782832391214377332853959212962366659268489704205032275232801227852493656646531276794978821392076992768973500707175856520042005411788418702576647556689341649462611635188882581380329146381808646580777012050294383137263520913518824277178834739592087219987371259284500716638696024251602215587717499342253465917257264461443270159148775428077540271829561535926364868508322540280604803502521488269631886772932265776319682721537417530853618889228315974016070182244113053248435894273113778681938670045049374303808489211392214849993217671904487743483977656243576090058590057087025947280957837294390583972601075715847735237383347580042374005362887924237066274364772492038596338951208898608922722581545328307075837742055121162347812077062806186642656683472252920032264213026505115244961398496800164706748127614033801151360326060957861671743541698208765810144560429857646612996231364873496714157940769435509491887933888602667290888032997005929748112345553464856594638502154672048026551832935177795360629084572545087336417739697169211537972940895869662749748461584278137621583476465515679407570952450064960263895912454299818300694012886373199318595487882424518699913026069592405831938824666520680051832993849110223789062873576584557185039138286511232601202416952194290444517996440719168952871638975517879366602790339562380219525185530552420687248215738496997983392615171472857252284096719366005854677218563507033678220236304835715975200250077833703314421083339415992006445324136759991284935663705227358923187546649346522673036253020631246886409903151088586771630691129868678620816582373570202627623241395185758664581505058896948065202063892792456661313071333051821861957147929210326785841249696751657669000661939727331726879817255640885118951627517663058161094374859594287212963867387143442720968858723507386472173004146516474820520379598104447460881615109232326272281852135557550246691739775756955339648425000150990327520626981248226598195271319245126526035298939738174937620798137754306295980842039489813106305006781320202468186297936460516548522474115448713214637162448002568619140175074410693738912528624887278615657143236333457677579133147738010573905937367451372348262938812831725159588038162476424740568517688700019176635916157317943684559695525209133786114190160026767707634573021449728271254429536029876913128144523860847698172866015317134256919271565861303373921107168264624313728245666959647176835693387610999437968113421386703131303261082932782947325589674858726205799191997055317815, 3649568149926034890376706474953485096660231259094865526391103421871532702619620498368257808598475204370205962662745390277292286095478331524230454820736344790826521178699435737016177090487785160507761821471732422356877508574783926146248204857142409115043502151840149578276190292296722110112341986197225060230719490485933258843879132335418356803651696408248302780693012884630786086958529869925840954978390519296673742457729525425033511594944367891481869053693628482949147654598298751235959330872399258828206959274228313581618751095761471091921931145686670212457343517051925671044917955156530891938778436640808907410197031098012727601084567316811234900735662649138607536328881238566678412444314711130863053748723503910742379119879713177276873287081873657580288273232061276266508233352353027589882448237912184961814579375453554554348000098815829737759073574488784810928068057866905433641305810548631363718768163446942397366122944694121573980865924460228053628891468194582149536326865384474175758439478726192029993789891196037218727147315433618928095934684352672266595164167741990257086497985273641493722803993201276208780976142329686236208060788353417713532116155211851839333044358452671557801926299855115827866336154146662782214126786127707066307939310599031085628149399007460327055070413060865697908873406525559479348622366936969042856241884527841172618263310578151149566206799664824789360339257712478935482328095133007920753117298065782239101749608516519804235520371682871207374913335435389508897987453954246002327186251716322731196223368992638135808461167655674628723844798023981679681341898361041595644289825325752668774685167349959410870791926944016571727448620285039416172759381809872441866854119648632783845242139996166117415667594387457620796600301185303367932976528646294991467922733657373695373620055786266607958429802570645711844670018901390297947579301986053134497636808541954878517671839336726067167062951719677912582171472821848499838956491127489157666054273854394839772967430850394031692323461292422267649321961642002233547783305708221217489888828497778955485980348891144324122207535430145810758121732206064278606809163821696157479666051887671200466375237762516841807625380132407162410709536056162165777753681070966086323431627378090359619825885984531673621405567815407568046012606515725666184355532016987758626937918317055693040434889876484530851671823645921867359568856633092198246661427350494999335833273941330524253760825839294370210033480229767630664272531345423745440992701348008629775233982911123995530582715491282844357734362333109445708235829583214618323574791122112407922503704913766097144101253425939107625187470984164185909490547364089069479177024254733526123865428432387194603781975288882996696919658912889434077293543495043829492052966677106795753444487394052167134279584068342127702181038637209314565389831421019559614523957328825361779114732514746624076368364048258552176644481024805986540637267029629158951991033834522566979711154457005899116424865017227274009200216891333160851868641305284321367233715376808923354712242286330745879699019644455297486867697240662919368492379175992607385763444905228079047588073018743548403995874085692268130015966601962702289635642185390970578936136421083558045937643790321328433667748875482761808078169633656457946193677396152875788685876509700990990024857305100343993745402202762986907742843244933959684326840376570941727845839956881134178022962580779783241071538518493281475624481212265218345513540726133015663763376644320579218974311083711821636259605907956756055113751070445653389091465373885074579233448060664671620582617719435306842119491652153439478563039301439192366948374097820847882087714212642934491744334848810001846415042092505188111231475018236006052060335910292442670550125285759728497236425394842094137344501411223425637490246009853, 10874208459849848832229877168322910696534671965501008751940378157121501243629103547865606775701036652627542814604811336867141788543601718164053413919811137236174475736685676762337343065427933875374668729941685810387380014519176586890382904443660317180031212615650443762327394213085301610611562810995481083773830653017121188232997605402081659471588203129000142013926037801395586557174977970973671928479896619438485515002762089404167838200464520725409560826298656001614353502092820947479862216250768663347586597488128236004452761903264000953181779954122066581594391263993868970945603598545517045428797334308443111182468687340138335492893909320976086023676318003288043344965858171842032297096806257456067894463703164369308885093125710670708522570586241407294276945961185351383255489206960437388929151397939341947825554214156334569165257828624446660811356218011840931430535244821209603235363779023921495447621990789948713704573070277786262436788956348822600337552395153475941780163304671530445476226231726469340420294733766518750664132680703670978562069933922811799591190891095659816213632831975480423078277629767862522245662648742732476025563315315069829970539213285077920374280726621949909709182966477678477888734635509531985564598652609458521648913645574552076871037159738843747587726039874102196196416124010688448827592007981533440809415486923466599106820254952233080912326832538453922837142687561445466453782730122279224765993889591961932703853304187192817007896856523020447084888233505670419643111503994042938672870727323364150322581412577493626821928629264846390010689319210373573720907058554875771813183853500653083219959547393041214553550765875148713206825294845513261299886160194051226847743327171005487449273649594802900027801100999037917169443453491003936131798402375113490984263942567017139474893470015291958798483316346591987651593043727198587041032103179134434294055975295742933605051521440721994707268579653838759004157333579892569178282668872359471126151541004451787733917896637013190095173547697479604932195145122124446214724724262227905648636777125369313683818083366613750228442650373609791005425367417413574812014347349192253164813374803125600766164663644184883344246982462434902947729520155748239489831204810878948587509178123237561954101398961092824001097906300858820769557216684406625944690242247775669647255780684620593918902600219932473047859780517642647863660123718608058491438932251342642312249670659587393884817385806343266278178135054628014841471738655524154042202215562559439166289816453626812903301023135592747507552223022673868202344476582818581083264801461925254003379730119396464901222870145872821674545965050210649810208589865245781903796746846287878150160805859405918383993416752902195939655174841032356266289409793447197173312440192455582509621636474143759995303569534623815419522981408524237525071173833658603936658827977168442915438726681159139107344761557709972287938920548494704999896831031467905252308764674321391660029414269643627618374594794315854707500419262725570482082695018911866033804024690184380446242177405535837967847753179693055012559672153637972738723284409500683890950265091366045062825699269784342520863057007088258901644462528584117085168309196612559568523828188890143704825934889403582724571775859051784617894778776138594245838083719325619792832925993642726263433529036692647118516929127628223088089443492435276669002850629639736072238352080628098959582321171570859521892766185356702265508283454905190243954041641144837700535620672801443675047595598456655620330648326929886557109429138037337368317947460775572541297628707764592364259756829504129133526721837502416661142727657284799936322572726549760114653213480457380148117649120435524410961244797500796167506028634040739404695239266560150654146291409407999601908993573815233895514778137404633426656523375762], 'aut_phi_ratio': 18.0, 'aut_solvable': True, 'aut_stats': [[1, 1, 1, 1], [2, 6, 1, 1], [2, 9, 1, 1], [2, 108, 1, 1], [2, 324, 1, 2], [2, 648, 2, 1], [2, 729, 1, 1], [2, 972, 1, 1], [2, 2916, 1, 2], [2, 4374, 1, 1], [2, 6561, 1, 1], [3, 4, 1, 2], [3, 12, 1, 1], [3, 12, 3, 1], [3, 18, 2, 1], [3, 24, 1, 1], [3, 24, 3, 1], [3, 36, 3, 1], [3, 72, 3, 2], [3, 144, 1, 1], [3, 288, 1, 1], [3, 864, 1, 1], [3, 864, 3, 1], [3, 5184, 1, 1], [4, 108, 1, 1], [4, 324, 1, 2], [4, 648, 1, 1], [4, 972, 1, 1], [4, 1944, 2, 1], [4, 2916, 1, 2], [4, 5832, 1, 1], [4, 34992, 2, 1], [6, 12, 1, 3], [6, 12, 3, 1], [6, 18, 2, 1], [6, 24, 1, 3], [6, 24, 3, 2], [6, 36, 1, 4], [6, 36, 2, 1], [6, 36, 3, 3], [6, 48, 1, 1], [6, 48, 3, 1], [6, 72, 1, 3], [6, 72, 2, 3], [6, 72, 3, 10], [6, 72, 6, 3], [6, 144, 1, 1], [6, 144, 3, 9], [6, 144, 6, 2], [6, 216, 1, 2], [6, 432, 1, 2], [6, 648, 1, 4], [6, 648, 2, 2], [6, 648, 3, 2], [6, 864, 1, 2], [6, 864, 3, 1], [6, 1296, 1, 4], [6, 1296, 2, 2], [6, 1296, 3, 5], [6, 1296, 6, 1], [6, 1728, 1, 1], [6, 1728, 3, 1], [6, 1944, 1, 1], [6, 1944, 3, 1], [6, 2592, 3, 2], [6, 3888, 2, 1], [6, 3888, 6, 1], [6, 5832, 1, 1], [6, 5832, 2, 1], [6, 5832, 3, 1], [6, 7776, 1, 2], [6, 11664, 1, 2], [6, 15552, 1, 2], [6, 15552, 3, 1], [6, 34992, 1, 1], [6, 46656, 1, 1], [6, 46656, 2, 1], [8, 34992, 2, 1], [9, 288, 1, 1], [9, 576, 1, 1], [9, 864, 2, 1], [9, 1728, 3, 1], [9, 10368, 2, 1], [9, 20736, 1, 1], [12, 216, 1, 2], [12, 432, 1, 1], [12, 648, 1, 4], [12, 648, 2, 2], [12, 648, 3, 2], [12, 1296, 1, 6], [12, 1296, 2, 1], [12, 1296, 3, 7], [12, 1296, 6, 1], [12, 1944, 1, 1], [12, 1944, 3, 1], [12, 2592, 1, 1], [12, 2592, 3, 7], [12, 3888, 2, 2], [12, 3888, 6, 1], [12, 5832, 1, 1], [12, 5832, 2, 1], [12, 5832, 3, 1], [12, 7776, 1, 2], [12, 7776, 2, 1], [12, 7776, 6, 1], [12, 11664, 1, 3], [12, 11664, 2, 1], [12, 15552, 1, 2], [12, 15552, 3, 1], [12, 69984, 2, 1], [18, 864, 1, 1], [18, 864, 2, 1], [18, 1728, 1, 1], [18, 1728, 2, 1], [18, 1728, 3, 1], [18, 1728, 6, 1], [18, 15552, 1, 1], [18, 15552, 2, 1], [18, 93312, 2, 1], [24, 69984, 2, 1], [36, 15552, 1, 1], [36, 15552, 2, 1]], 'aut_supersolvable': False, 'aut_tex': 'C_6^4.C_3^4.(C_6\\times D_4).C_2', 'autcent_abelian': True, 'autcent_cyclic': True, 'autcent_exponent': 1, 'autcent_group': '1.1', 'autcent_hash': 1, 'autcent_nilpotent': True, 'autcent_order': 1, 'autcent_solvable': True, 'autcent_split': True, 'autcent_supersolvable': True, 'autcent_tex': 'C_1', 'autcentquo_abelian': False, 'autcentquo_cyclic': False, 'autcentquo_exponent': 72, 'autcentquo_group': None, 'autcentquo_hash': 447151837324768108, 'autcentquo_nilpotent': False, 'autcentquo_order': 10077696, 'autcentquo_solvable': True, 'autcentquo_supersolvable': False, 'autcentquo_tex': 'C_6^4.C_3^4.C_2.C_6.C_2^3', 'cc_stats': [[1, 1, 1], [2, 6, 1], [2, 9, 1], [2, 108, 1], [2, 324, 2], [2, 648, 2], [2, 729, 1], [2, 972, 1], [2, 2916, 2], [2, 4374, 1], [2, 6561, 1], [3, 4, 2], [3, 12, 4], [3, 18, 2], [3, 24, 4], [3, 36, 3], [3, 72, 6], [3, 144, 1], [3, 288, 1], [3, 864, 4], [3, 5184, 1], [4, 108, 1], [4, 324, 2], [4, 648, 1], [4, 972, 1], [4, 1944, 2], [4, 2916, 2], [4, 5832, 1], [4, 34992, 2], [6, 12, 6], [6, 18, 2], [6, 24, 9], [6, 36, 15], [6, 48, 4], [6, 72, 57], [6, 144, 40], [6, 216, 2], [6, 432, 2], [6, 648, 14], [6, 864, 5], [6, 1296, 29], [6, 1728, 4], [6, 1944, 4], [6, 2592, 6], [6, 3888, 8], [6, 5832, 6], [6, 7776, 2], [6, 11664, 2], [6, 15552, 5], [6, 34992, 1], [6, 46656, 3], [8, 34992, 2], [9, 288, 1], [9, 576, 1], [9, 864, 2], [9, 1728, 3], [9, 10368, 2], [9, 20736, 1], [12, 216, 2], [12, 432, 1], [12, 648, 14], [12, 1296, 35], [12, 1944, 4], [12, 2592, 22], [12, 3888, 10], [12, 5832, 6], [12, 7776, 10], [12, 11664, 5], [12, 15552, 5], [12, 69984, 2], [18, 864, 3], [18, 1728, 12], [18, 15552, 3], [18, 93312, 2], [24, 69984, 2], [36, 15552, 3]], 'center_label': '1.1', 'center_order': 1, 'central_product': False, 'central_quotient': '1679616.is', 'commutator_count': 1, 'commutator_label': None, 'complements_known': False, 'complete': False, 'complex_characters_known': False, 'composition_factors': ['2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '2.1', '3.1', '3.1', '3.1', '3.1', '3.1', '3.1', '3.1', '3.1'], 'composition_length': 16, 'conjugacy_classes_known': True, 'counter': 227, 'cyclic': False, 'derived_length': 4, 'dihedral': False, 'direct_factorization': [], 'direct_product': False, 'div_stats': [[1, 1, 1, 1], [2, 6, 1, 1], [2, 9, 1, 1], [2, 108, 1, 1], [2, 324, 1, 2], [2, 648, 1, 2], [2, 729, 1, 1], [2, 972, 1, 1], [2, 2916, 1, 2], [2, 4374, 1, 1], [2, 6561, 1, 1], [3, 4, 1, 2], [3, 12, 1, 4], [3, 18, 1, 2], [3, 24, 1, 4], [3, 36, 1, 3], [3, 72, 1, 6], [3, 144, 1, 1], [3, 288, 1, 1], [3, 864, 1, 4], [3, 5184, 1, 1], [4, 108, 1, 1], [4, 324, 1, 2], [4, 648, 1, 1], [4, 972, 1, 1], [4, 1944, 1, 2], [4, 2916, 1, 2], [4, 5832, 1, 1], [4, 34992, 1, 2], [6, 12, 1, 6], [6, 18, 1, 2], [6, 24, 1, 9], [6, 36, 1, 15], [6, 48, 1, 4], [6, 72, 1, 57], [6, 144, 1, 40], [6, 216, 1, 2], [6, 432, 1, 2], [6, 648, 1, 14], [6, 864, 1, 5], [6, 1296, 1, 29], [6, 1728, 1, 4], [6, 1944, 1, 4], [6, 2592, 1, 6], [6, 3888, 1, 8], [6, 5832, 1, 6], [6, 7776, 1, 2], [6, 11664, 1, 2], [6, 15552, 1, 5], [6, 34992, 1, 1], [6, 46656, 1, 3], [8, 34992, 1, 2], [9, 288, 1, 1], [9, 576, 1, 1], [9, 864, 2, 1], [9, 1728, 1, 3], [9, 10368, 1, 2], [9, 20736, 1, 1], [12, 216, 1, 2], [12, 432, 1, 1], [12, 648, 1, 14], [12, 1296, 1, 35], [12, 1944, 1, 4], [12, 2592, 1, 22], [12, 3888, 1, 10], [12, 5832, 1, 6], [12, 7776, 1, 10], [12, 11664, 1, 5], [12, 15552, 1, 5], [12, 69984, 1, 2], [18, 864, 1, 1], [18, 864, 2, 1], [18, 1728, 1, 4], [18, 1728, 2, 4], [18, 15552, 1, 1], [18, 15552, 2, 1], [18, 93312, 1, 2], [24, 69984, 1, 2], [36, 15552, 1, 1], [36, 15552, 2, 1]], 'element_repr_type': 'Perm', 'elementary': 1, 'eulerian_function': None, 'exponent': 72, 'exponents_of_order': [8, 8], 'factors_of_aut_order': [2, 3], 'factors_of_order': [2, 3], 'faithful_reps': [[12, 1, 12], [24, 1, 18], [36, 1, 36], [48, 0, 6], [48, 1, 9], [72, 1, 96], [144, 1, 39]], 'familial': False, 'frattini_label': '81.15', 'frattini_quotient': '20736.dj', 'hash': 7494867631108739006, 'hyperelementary': 1, 'inner_abelian': False, 'inner_cyclic': False, 'inner_exponent': 72, 'inner_gen_orders': [18, 24, 12], 'inner_gens': [[2591145499384530926975722, 82785016570167076178380030, 96454351560332667867812633], [32037807361722215780155793, 16808572718369597977868409, 33176432629824933508413908], [126637091768629788759741827, 225959365856760377647297266, 32993114507303845598335158]], 'inner_hash': 7494867631108739006, 'inner_nilpotent': False, 'inner_order': 1679616, 'inner_split': True, 'inner_tex': 'C_3^6.S_4^2:C_2^2', 'inner_used': [1, 2, 3], 'irrC_degree': 12, 'irrQ_degree': 12, 'irrQ_dim': None, 'irrR_degree': None, 'irrep_stats': [[1, 8], [2, 2], [4, 16], [6, 8], [8, 8], [9, 8], [12, 44], [16, 2], [18, 18], [24, 54], [36, 76], [48, 23], [72, 126], [144, 40]], 'label': '1679616.is', 'linC_count': None, 'linC_degree': None, 'linFp_degree': None, 'linFq_degree': None, 'linQ_degree': None, 'linQ_degree_count': None, 'linQ_dim': None, 'linQ_dim_count': None, 'linR_count': None, 'linR_degree': None, 'maximal_subgroups_known': True, 'metabelian': False, 'metacyclic': False, 'monomial': None, 'name': 'C3^6.S4^2:C2^2', 'ngens': 3, 'nilpotency_class': -1, 'nilpotent': False, 'normal_counts': [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0], 'normal_index_bound': 0, 'normal_order_bound': 0, 'normal_subgroups_known': True, 'number_autjugacy_classes': 210, 'number_characteristic_subgroups': 23, 'number_conjugacy_classes': 433, 'number_divisions': 425, 'number_normal_subgroups': 35, 'number_subgroup_autclasses': None, 'number_subgroup_classes': None, 'number_subgroups': None, 'old_label': None, 'order': 1679616, 'order_factorization_type': 33, 'order_stats': [[1, 1], [2, 20535], [3, 9800], [4, 87912], [6, 451128], [8, 69984], [9, 49248], [12, 547776], [18, 256608], [24, 139968], [36, 46656]], 'outer_abelian': True, 'outer_cyclic': True, 'outer_equivalence': True, 'outer_exponent': 6, 'outer_gen_orders': [6], 'outer_gen_pows': [0], 'outer_gens': [[268114092672099176837471928, 191369555134990672347905280, 102382438354545880304159346]], 'outer_group': '6.2', 'outer_hash': 2, 'outer_nilpotent': True, 'outer_order': 6, 'outer_permdeg': 5, 'outer_perms': [28], 'outer_solvable': True, 'outer_supersolvable': True, 'outer_tex': 'C_6', 'pc_rank': None, 'perfect': False, 'permutation_degree': 26, 'pgroup': 0, 'primary_abelian_invariants': [2, 2, 2], 'quasisimple': False, 'rank': 3, 'rational': False, 'rational_characters_known': False, 'ratrep_stats': [[1, 8], [2, 2], [4, 16], [6, 8], [8, 8], [9, 8], [12, 44], [16, 2], [18, 18], [24, 46], [36, 76], [48, 19], [72, 126], [96, 4], [144, 40]], 'representations': {'PC': {'code': '639482164253231392493268707694163493283960760868565205550944830649041885151823758532827550837056918646026699041541609082582764901291614078355404929296251954697730950908111328563733215521563632079483272883750426053178790246164327469727943022530994369242787063187103906640754069443317199493598350850670295780258856700516863138907696440166565970058343934589383385530908447350276198043688404486095901232962334319798141192933136403811768501996962802954344535712100287161911192047511082989849804782261722090736789804980390764896428946986170780335', 'gens': [1, 2, 4, 6, 8, 10, 12, 14, 15, 16], 'pres': [16, 2, 2, 2, 2, 3, 2, 3, 2, 3, 2, 3, 2, 3, 3, 3, 3, 685056, 47678657, 81, 12802754, 14631010, 5827075, 9639699, 23156643, 179, 36282884, 66487060, 14327716, 68120069, 58807317, 17026597, 8515061, 4257285, 277, 21510, 39674902, 5414, 2742, 157532167, 50465815, 23136807, 7955767, 5546183, 375, 102131720, 73838616, 1969960, 14753720, 6335784, 177256, 5283849, 3386905, 1520681, 798777, 382153, 21241, 9257, 473, 625162, 64171034, 154234, 39146, 133042187, 668187, 33260587, 28408379, 14826315, 823803, 231115, 571, 247283724, 369436, 61820972, 17881404, 9479884, 526780, 429452, 255510541, 109541405, 64253997, 18004285, 8129933, 454397, 502797, 343388174, 181647390, 66355246, 32973182, 20580558, 1146366, 581902, 170778639, 56635423, 71884847, 36056127, 9068623]}, 'Perm': {'d': 26, 'gens': [2591145499384530926975722, 16808572718369597977868409, 32993114507303845598335158]}}, 'schur_multiplier': [2, 2, 2, 2], 'semidirect_product': None, 'simple': False, 'smith_abelian_invariants': [2, 2, 2], 'solvability_type': 17, 'solvable': True, 'subgroup_inclusions_known': False, 'subgroup_index_bound': 64, 'supersolvable': False, 'sylow_subgroups_known': True, 'tex_name': 'C_3^6.S_4^2:C_2^2', 'transitive_degree': 36, 'wreath_data': None, 'wreath_product': False}