Properties

Label 1632.782.1.a1.a1
Order $ 2^{5} \cdot 3 \cdot 17 $
Index $ 1 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$D_{12}.C_{68}$
Order: \(1632\)\(\medspace = 2^{5} \cdot 3 \cdot 17 \)
Index: $1$
Exponent: \(408\)\(\medspace = 2^{3} \cdot 3 \cdot 17 \)
Generators: $c^{24}, c^{102}, c^{204}, c^{51}, b, a, c^{272}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is the radical (hence characteristic, normal, and solvable), a direct factor, nonabelian, a Hall subgroup, supersolvable (hence monomial), hyperelementary for $p = 2$, and metabelian.

Ambient group ($G$) information

Description: $D_{12}.C_{68}$
Order: \(1632\)\(\medspace = 2^{5} \cdot 3 \cdot 17 \)
Exponent: \(408\)\(\medspace = 2^{3} \cdot 3 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_1$
Order: $1$
Exponent: $1$
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $0$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary (for every $p$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group (for every $p$), perfect, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2\times C_{16}\times C_2^2\times D_4)$
$\operatorname{Aut}(H)$ $C_3:(C_2\times C_{16}\times C_2^2\times D_4)$
$W$$C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \)

Related subgroups

Centralizer:$C_{68}$
Normalizer:$D_{12}.C_{68}$
Complements:$C_1$
Maximal under-subgroups:$D_{12}:C_{34}$$\OD_{16}\times C_{51}$$C_6:C_{136}$$S_3\times C_{136}$$S_3\times C_{136}$$C_{24}:C_{34}$$C_{24}:C_{34}$$\OD_{16}:C_{34}$$C_8.D_6$

Other information

Möbius function$1$
Projective image$C_2\times D_6$