Subgroup ($H$) information
Description: | $S_3\times C_{136}$ |
Order: | \(816\)\(\medspace = 2^{4} \cdot 3 \cdot 17 \) |
Index: | \(2\) |
Exponent: | \(408\)\(\medspace = 2^{3} \cdot 3 \cdot 17 \) |
Generators: |
$c^{306}, c^{204}, c^{272}, c^{24}, bc^{289}, ac^{255}$
|
Derived length: | $2$ |
The subgroup is normal, maximal, a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.
Ambient group ($G$) information
Description: | $D_{12}.C_{68}$ |
Order: | \(1632\)\(\medspace = 2^{5} \cdot 3 \cdot 17 \) |
Exponent: | \(408\)\(\medspace = 2^{3} \cdot 3 \cdot 17 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_2$ |
Order: | \(2\) |
Exponent: | \(2\) |
Automorphism Group: | $C_1$, of order $1$ |
Outer Automorphisms: | $C_1$, of order $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3:(C_2\times C_{16}\times C_2^2\times D_4)$ |
$\operatorname{Aut}(H)$ | $C_2^2\times C_{16}\times D_6$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \) |
$\operatorname{res}(S)$ | $C_3 \rtimes (C_2^4\times C_{16})$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(2\) |
$W$ | $D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \) |
Related subgroups
Other information
Möbius function | $-1$ |
Projective image | $C_2\times D_6$ |