Properties

Label 1632.782.2.d1.b1
Order $ 2^{4} \cdot 3 \cdot 17 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$S_3\times C_{136}$
Order: \(816\)\(\medspace = 2^{4} \cdot 3 \cdot 17 \)
Index: \(2\)
Exponent: \(408\)\(\medspace = 2^{3} \cdot 3 \cdot 17 \)
Generators: $c^{306}, c^{204}, c^{272}, c^{24}, bc^{289}, ac^{255}$ Copy content Toggle raw display
Derived length: $2$

The subgroup is normal, maximal, a semidirect factor, nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), hyperelementary for $p = 2$, and an A-group.

Ambient group ($G$) information

Description: $D_{12}.C_{68}$
Order: \(1632\)\(\medspace = 2^{5} \cdot 3 \cdot 17 \)
Exponent: \(408\)\(\medspace = 2^{3} \cdot 3 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2\times C_{16}\times C_2^2\times D_4)$
$\operatorname{Aut}(H)$ $C_2^2\times C_{16}\times D_6$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\operatorname{res}(S)$$C_3 \rtimes (C_2^4\times C_{16})$, of order \(768\)\(\medspace = 2^{8} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(2\)
$W$$D_6$, of order \(12\)\(\medspace = 2^{2} \cdot 3 \)

Related subgroups

Centralizer:$C_{136}$
Normalizer:$D_{12}.C_{68}$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$D_{12}.C_{68}$
Maximal under-subgroups:$S_3\times C_{68}$$C_{408}$$C_3:C_{136}$$C_2\times C_{136}$$S_3\times C_8$
Autjugate subgroups:1632.782.2.d1.a1

Other information

Möbius function$-1$
Projective image$C_2\times D_6$