Properties

Label 1632.782.2.b1.a1
Order $ 2^{4} \cdot 3 \cdot 17 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$\OD_{16}\times C_{51}$
Order: \(816\)\(\medspace = 2^{4} \cdot 3 \cdot 17 \)
Index: \(2\)
Exponent: \(408\)\(\medspace = 2^{3} \cdot 3 \cdot 17 \)
Generators: $c^{24}, c^{102}, c^{204}, c^{272}, c^{51}, a$ Copy content Toggle raw display
Nilpotency class: $2$
Derived length: $2$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), maximal, a semidirect factor, nonabelian, elementary for $p = 2$ (hence hyperelementary), and metacyclic (hence metabelian).

Ambient group ($G$) information

Description: $D_{12}.C_{68}$
Order: \(1632\)\(\medspace = 2^{5} \cdot 3 \cdot 17 \)
Exponent: \(408\)\(\medspace = 2^{3} \cdot 3 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_3:(C_2\times C_{16}\times C_2^2\times D_4)$
$\operatorname{Aut}(H)$ $C_2^2\times C_{16}\times D_4$, of order \(512\)\(\medspace = 2^{9} \)
$\operatorname{res}(\operatorname{Aut}(G))$$(C_2\times C_8) . C_2^5$, of order \(512\)\(\medspace = 2^{9} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(6\)\(\medspace = 2 \cdot 3 \)
$W$$C_2^3$, of order \(8\)\(\medspace = 2^{3} \)

Related subgroups

Centralizer:$C_{204}$
Normalizer:$D_{12}.C_{68}$
Complements:$C_2$ $C_2$
Minimal over-subgroups:$D_{12}.C_{68}$
Maximal under-subgroups:$C_2\times C_{204}$$C_{408}$$C_{408}$$\OD_{16}\times C_{17}$$C_3\times \OD_{16}$

Other information

Möbius function$-1$
Projective image$C_2\times D_6$