Subgroup ($H$) information
| Description: | $\OD_{16}\times C_{17}$ |
| Order: | \(272\)\(\medspace = 2^{4} \cdot 17 \) |
| Index: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Exponent: | \(136\)\(\medspace = 2^{3} \cdot 17 \) |
| Generators: |
$c^{102}, c^{204}, c^{24}, c^{51}, a$
|
| Nilpotency class: | $2$ |
| Derived length: | $2$ |
The subgroup is characteristic (hence normal), a semidirect factor, nonabelian, elementary for $p = 2$ (hence nilpotent, solvable, supersolvable, monomial, and hyperelementary), and metacyclic (hence metabelian).
Ambient group ($G$) information
| Description: | $D_{12}.C_{68}$ |
| Order: | \(1632\)\(\medspace = 2^{5} \cdot 3 \cdot 17 \) |
| Exponent: | \(408\)\(\medspace = 2^{3} \cdot 3 \cdot 17 \) |
| Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
| Description: | $S_3$ |
| Order: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Exponent: | \(6\)\(\medspace = 2 \cdot 3 \) |
| Automorphism Group: | $S_3$, of order \(6\)\(\medspace = 2 \cdot 3 \) |
| Outer Automorphisms: | $C_1$, of order $1$ |
| Nilpotency class: | $-1$ |
| Derived length: | $2$ |
The quotient is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), hyperelementary for $p = 2$, and rational.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
| $\operatorname{Aut}(G)$ | $C_3:(C_2\times C_{16}\times C_2^2\times D_4)$ |
| $\operatorname{Aut}(H)$ | $C_2\times D_4\times C_{16}$, of order \(256\)\(\medspace = 2^{8} \) |
| $\operatorname{res}(\operatorname{Aut}(G))$ | $C_2\times D_4\times C_{16}$, of order \(256\)\(\medspace = 2^{8} \) |
| $\card{\operatorname{ker}(\operatorname{res})}$ | \(12\)\(\medspace = 2^{2} \cdot 3 \) |
| $W$ | $C_2^2$, of order \(4\)\(\medspace = 2^{2} \) |
Related subgroups
Other information
| Möbius function | $3$ |
| Projective image | $C_2\times D_6$ |