Subgroup ($H$) information
Description: | $C_8.D_6$ |
Order: | \(96\)\(\medspace = 2^{5} \cdot 3 \) |
Index: | \(17\) |
Exponent: | \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Generators: |
$a, c^{272}, c^{204}, b, c^{51}, c^{102}$
|
Derived length: | $2$ |
The subgroup is characteristic (hence normal), maximal, a direct factor, nonabelian, a Hall subgroup, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Ambient group ($G$) information
Description: | $D_{12}.C_{68}$ |
Order: | \(1632\)\(\medspace = 2^{5} \cdot 3 \cdot 17 \) |
Exponent: | \(408\)\(\medspace = 2^{3} \cdot 3 \cdot 17 \) |
Derived length: | $2$ |
The ambient group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, and metabelian.
Quotient group ($Q$) structure
Description: | $C_{17}$ |
Order: | \(17\) |
Exponent: | \(17\) |
Automorphism Group: | $C_{16}$, of order \(16\)\(\medspace = 2^{4} \) |
Outer Automorphisms: | $C_{16}$, of order \(16\)\(\medspace = 2^{4} \) |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, and simple.
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_3:(C_2\times C_{16}\times C_2^2\times D_4)$ |
$\operatorname{Aut}(H)$ | $C_{12}:C_2^4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_{12}:C_2^4$, of order \(192\)\(\medspace = 2^{6} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(16\)\(\medspace = 2^{4} \) |
$W$ | $C_2\times D_6$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
Related subgroups
Other information
Möbius function | $-1$ |
Projective image | $D_6\times C_{34}$ |