Subgroup ($H$) information
Description: | $C_3\times \GL(2,3).D_8$ |
Order: | \(2304\)\(\medspace = 2^{8} \cdot 3^{2} \) |
Index: | \(7\) |
Exponent: | \(48\)\(\medspace = 2^{4} \cdot 3 \) |
Generators: |
$\left(\begin{array}{rrrr}
6 & 0 & 0 & 0 \\
0 & 6 & 0 & 0 \\
0 & 0 & 6 & 0 \\
0 & 0 & 0 & 6
\end{array}\right), \left(\begin{array}{rrrr}
1 & 1 & 2 & 2 \\
1 & 4 & 0 & 3 \\
5 & 1 & 5 & 0 \\
6 & 4 & 0 & 4
\end{array}\right), \left(\begin{array}{rrrr}
4 & 0 & 0 & 0 \\
0 & 4 & 0 & 0 \\
0 & 0 & 4 & 0 \\
0 & 0 & 0 & 4
\end{array}\right), \left(\begin{array}{rrrr}
5 & 4 & 6 & 3 \\
1 & 4 & 1 & 6 \\
5 & 0 & 0 & 3 \\
3 & 5 & 6 & 6
\end{array}\right), \left(\begin{array}{rrrr}
3 & 2 & 3 & 5 \\
4 & 6 & 4 & 3 \\
6 & 0 & 4 & 5 \\
5 & 6 & 3 & 0
\end{array}\right), \left(\begin{array}{rrrr}
6 & 2 & 4 & 0 \\
5 & 1 & 0 & 3 \\
1 & 0 & 1 & 2 \\
0 & 6 & 5 & 6
\end{array}\right), \left(\begin{array}{rrrr}
0 & 4 & 5 & 3 \\
4 & 1 & 6 & 2 \\
6 & 5 & 2 & 6 \\
0 & 4 & 1 & 4
\end{array}\right), \left(\begin{array}{rrrr}
6 & 1 & 0 & 6 \\
1 & 6 & 5 & 6 \\
0 & 1 & 2 & 2 \\
5 & 3 & 2 & 5
\end{array}\right), \left(\begin{array}{rrrr}
5 & 2 & 3 & 5 \\
4 & 1 & 4 & 3 \\
6 & 0 & 6 & 5 \\
5 & 6 & 3 & 2
\end{array}\right), \left(\begin{array}{rrrr}
4 & 3 & 4 & 0 \\
2 & 0 & 6 & 6 \\
3 & 3 & 4 & 0 \\
6 & 3 & 5 & 6
\end{array}\right)$
|
Derived length: | $4$ |
The subgroup is maximal, nonabelian, a Hall subgroup, and solvable.
Ambient group ($G$) information
Description: | $C_3\times \SL(2,7).D_8$ |
Order: | \(16128\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 7 \) |
Exponent: | \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \) |
Derived length: | $2$ |
The ambient group is nonabelian and nonsolvable.
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $(C_2\times C_4).C_2^4.\SO(3,7)$ |
$\operatorname{Aut}(H)$ | $C_5^4:C_2.C_2^4$, of order \(6144\)\(\medspace = 2^{11} \cdot 3 \) |
$W$ | $D_8\times S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $7$ |
Möbius function | not computed |
Projective image | $D_8\times \GL(3,2)$ |