Properties

Label 16128.bb.14.a1.a2
Order $ 2^{7} \cdot 3^{2} $
Index $ 2 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_3\times \SL(2,3).D_8$
Order: \(1152\)\(\medspace = 2^{7} \cdot 3^{2} \)
Index: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(48\)\(\medspace = 2^{4} \cdot 3 \)
Generators: $\left(\begin{array}{rrrr} 1 & 1 & 2 & 2 \\ 1 & 4 & 0 & 3 \\ 5 & 1 & 5 & 0 \\ 6 & 4 & 0 & 4 \end{array}\right), \left(\begin{array}{rrrr} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{array}\right), \left(\begin{array}{rrrr} 5 & 2 & 3 & 5 \\ 4 & 1 & 4 & 3 \\ 6 & 0 & 6 & 5 \\ 5 & 6 & 3 & 2 \end{array}\right), \left(\begin{array}{rrrr} 6 & 1 & 0 & 6 \\ 1 & 6 & 5 & 6 \\ 0 & 1 & 2 & 2 \\ 5 & 3 & 2 & 5 \end{array}\right), \left(\begin{array}{rrrr} 6 & 2 & 4 & 0 \\ 5 & 1 & 0 & 3 \\ 1 & 0 & 1 & 2 \\ 0 & 6 & 5 & 6 \end{array}\right), \left(\begin{array}{rrrr} 6 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 6 \end{array}\right), \left(\begin{array}{rrrr} 5 & 4 & 6 & 3 \\ 1 & 4 & 1 & 6 \\ 5 & 0 & 0 & 3 \\ 3 & 5 & 6 & 6 \end{array}\right), \left(\begin{array}{rrrr} 0 & 4 & 5 & 3 \\ 4 & 1 & 6 & 2 \\ 6 & 5 & 2 & 6 \\ 0 & 4 & 1 & 4 \end{array}\right), \left(\begin{array}{rrrr} 3 & 2 & 3 & 5 \\ 4 & 6 & 4 & 3 \\ 6 & 0 & 4 & 5 \\ 5 & 6 & 3 & 0 \end{array}\right)$ Copy content Toggle raw display
Derived length: $3$

The subgroup is nonabelian and solvable.

Ambient group ($G$) information

Description: $C_3\times \SL(2,7).D_8$
Order: \(16128\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 7 \)
Exponent: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_4).C_2^4.\SO(3,7)$
$\operatorname{Aut}(H)$ $C_2^2.C_{12}^2.C_2^4$
$W$$D_8\times S_4$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)

Related subgroups

Centralizer:$C_6$
Normalizer:$C_3\times \GL(2,3).D_8$
Normal closure:$C_3\times \SL(2,7).D_8$
Core:$C_3\times \SD_{32}$
Minimal over-subgroups:$C_3\times \GL(2,3).D_8$
Maximal under-subgroups:$C_3\times D_8.A_4$$C_3\times Q_{16}.A_4$$C_{48}.A_4$$C_{48}.C_2^3$$\SL(2,3).D_8$$\SL(2,3).D_8$$C_3^2\times \SD_{32}$
Autjugate subgroups:16128.bb.14.a1.a1

Other information

Number of subgroups in this conjugacy class$7$
Möbius function not computed
Projective image$D_8\times \GL(3,2)$