Properties

Label 16128.bb
Order \( 2^{8} \cdot 3^{2} \cdot 7 \)
Exponent \( 2^{4} \cdot 3 \cdot 7 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \cdot 3 \)
$\card{Z(G)}$ \( 2 \cdot 3 \)
$\card{\Aut(G)}$ \( 2^{11} \cdot 3 \cdot 7 \)
$\card{\mathrm{Out}(G)}$ \( 2^{4} \)
Perm deg. $131$
Trans deg. $384$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 131 | (1,2)(3,12)(4,25)(5,18)(6,38)(7,16)(8,13)(9,45)(10,15)(11,44)(14,51)(17,61)(19,39)(21,35)(22,43)(26,41)(27,54)(28,31)(30,72)(32,55)(33,58)(34,69)(36,78)(37,60)(40,67)(47,93)(48,63)(50,86)(53,73)(56,81)(57,80)(59,68)(62,70)(64,89)(65,66)(71,92)(74,87)(75,84)(76,101)(77,79)(82,85)(83,99)(91,98)(94,103)(96,102)(97,100)(105,109)(107,123)(110,119)(111,122)(112,128)(113,118)(114,121)(115,127)(116,120)(125,126), (1,3,7,8)(2,13,16,12)(4,20,25,29)(5,21,35,18)(6,19,39,38)(9,22,43,45)(10,23,15,46)(11,24,44,42)(14,51,55,32)(17,52,61,49)(26,34,60,73)(27,65,72,56)(28,57,59,78)(30,66,54,81)(31,36,68,80)(33,67,86,64)(37,69,41,53)(40,58,89,50)(47,70,92,63)(48,71,62,93)(74,104,87,90)(75,100,97,84)(76,105,109,101)(77,88,79,95)(82,85,98,91)(83,106,99,117)(94,107,123,103)(96,108,102,124)(110,113,121,112)(111,127,125,120)(114,118,119,128)(115,122,116,126), (129,130,131), (1,4,26,45,8,29,73,43,7,25,60,22,3,20,34,9)(2,14,53,49,12,32,41,61,16,55,69,52,13,51,37,17)(5,33,11,31,18,64,42,80,35,86,44,68,21,67,24,36)(6,28,10,50,38,78,46,89,39,59,15,58,19,57,23,40)(27,74,110,101,56,90,112,109,72,87,121,105,65,104,113,76)(30,82,118,117,81,91,114,99,54,98,128,106,66,85,119,83)(47,94,116,79,63,103,122,88,92,123,115,77,70,107,126,95)(48,96,127,100,93,124,111,75,62,102,120,84,71,108,125,97), (1,5,13,46,8,18,2,15,7,35,12,23,3,21,16,10)(4,27,51,81,29,56,14,54,25,72,32,66,20,65,55,30)(6,34,24,69,38,26,11,37,39,73,42,53,19,60,44,41)(9,47,52,93,45,63,17,62,43,92,49,71,22,70,61,48)(28,75,36,88,78,84,31,77,59,97,80,95,57,100,68,79)(33,85,89,104,64,82,58,74,86,91,40,90,67,98,50,87)(76,112,117,128,101,121,99,119,109,113,106,118,105,110,83,114)(94,125,124,126,103,127,102,116,123,111,108,122,107,120,96,115)(129,131,130), (1,6,12,42,8,38,16,44,7,39,13,24,3,19,2,11)(4,28,32,80,29,78,55,68,25,59,51,36,20,57,14,31)(5,34,23,53,18,26,10,41,35,73,46,69,21,60,15,37)(9,40,49,64,45,50,61,86,43,89,52,67,22,58,17,33)(27,75,66,95,56,84,30,79,72,97,81,88,65,100,54,77)(47,90,71,82,63,87,48,91,92,104,93,98,70,74,62,85)(76,111,106,126,101,120,83,116,109,125,117,122,105,127,99,115)(94,112,108,118,103,121,96,114,123,113,124,128,107,110,102,119)(129,131,130), (1,7)(2,16)(3,8)(4,25)(5,35)(6,39)(9,43)(10,15)(11,44)(12,13)(14,55)(17,61)(18,21)(19,38)(20,29)(22,45)(23,46)(24,42)(26,60)(27,72)(28,59)(30,54)(31,68)(32,51)(33,86)(34,73)(36,80)(37,41)(40,89)(47,92)(48,62)(49,52)(50,58)(53,69)(56,65)(57,78)(63,70)(64,67)(66,81)(71,93)(74,87)(75,97)(76,109)(77,79)(82,98)(83,99)(84,100)(85,91)(88,95)(90,104)(94,123)(96,102)(101,105)(103,107)(106,117)(108,124)(110,121)(111,125)(112,113)(114,119)(115,116)(118,128)(120,127)(122,126), (1,2,3,13,7,16,8,12)(4,14,20,51,25,55,29,32)(5,15,21,46,35,10,18,23)(6,11,19,24,39,44,38,42)(9,17,22,52,43,61,45,49)(26,53,34,37,60,69,73,41)(27,54,65,81,72,30,56,66)(28,31,57,36,59,68,78,80)(33,58,67,89,86,50,64,40)(47,62,70,93,92,48,63,71)(74,98,104,91,87,82,90,85)(75,77,100,88,97,79,84,95)(76,99,105,117,109,83,101,106)(94,102,107,124,123,96,103,108)(110,128,113,114,121,118,112,119)(111,115,127,122,125,116,120,126) >;
 
Copy content gap:G := Group( (1,2)(3,12)(4,25)(5,18)(6,38)(7,16)(8,13)(9,45)(10,15)(11,44)(14,51)(17,61)(19,39)(21,35)(22,43)(26,41)(27,54)(28,31)(30,72)(32,55)(33,58)(34,69)(36,78)(37,60)(40,67)(47,93)(48,63)(50,86)(53,73)(56,81)(57,80)(59,68)(62,70)(64,89)(65,66)(71,92)(74,87)(75,84)(76,101)(77,79)(82,85)(83,99)(91,98)(94,103)(96,102)(97,100)(105,109)(107,123)(110,119)(111,122)(112,128)(113,118)(114,121)(115,127)(116,120)(125,126), (1,3,7,8)(2,13,16,12)(4,20,25,29)(5,21,35,18)(6,19,39,38)(9,22,43,45)(10,23,15,46)(11,24,44,42)(14,51,55,32)(17,52,61,49)(26,34,60,73)(27,65,72,56)(28,57,59,78)(30,66,54,81)(31,36,68,80)(33,67,86,64)(37,69,41,53)(40,58,89,50)(47,70,92,63)(48,71,62,93)(74,104,87,90)(75,100,97,84)(76,105,109,101)(77,88,79,95)(82,85,98,91)(83,106,99,117)(94,107,123,103)(96,108,102,124)(110,113,121,112)(111,127,125,120)(114,118,119,128)(115,122,116,126), (129,130,131), (1,4,26,45,8,29,73,43,7,25,60,22,3,20,34,9)(2,14,53,49,12,32,41,61,16,55,69,52,13,51,37,17)(5,33,11,31,18,64,42,80,35,86,44,68,21,67,24,36)(6,28,10,50,38,78,46,89,39,59,15,58,19,57,23,40)(27,74,110,101,56,90,112,109,72,87,121,105,65,104,113,76)(30,82,118,117,81,91,114,99,54,98,128,106,66,85,119,83)(47,94,116,79,63,103,122,88,92,123,115,77,70,107,126,95)(48,96,127,100,93,124,111,75,62,102,120,84,71,108,125,97), (1,5,13,46,8,18,2,15,7,35,12,23,3,21,16,10)(4,27,51,81,29,56,14,54,25,72,32,66,20,65,55,30)(6,34,24,69,38,26,11,37,39,73,42,53,19,60,44,41)(9,47,52,93,45,63,17,62,43,92,49,71,22,70,61,48)(28,75,36,88,78,84,31,77,59,97,80,95,57,100,68,79)(33,85,89,104,64,82,58,74,86,91,40,90,67,98,50,87)(76,112,117,128,101,121,99,119,109,113,106,118,105,110,83,114)(94,125,124,126,103,127,102,116,123,111,108,122,107,120,96,115)(129,131,130), (1,6,12,42,8,38,16,44,7,39,13,24,3,19,2,11)(4,28,32,80,29,78,55,68,25,59,51,36,20,57,14,31)(5,34,23,53,18,26,10,41,35,73,46,69,21,60,15,37)(9,40,49,64,45,50,61,86,43,89,52,67,22,58,17,33)(27,75,66,95,56,84,30,79,72,97,81,88,65,100,54,77)(47,90,71,82,63,87,48,91,92,104,93,98,70,74,62,85)(76,111,106,126,101,120,83,116,109,125,117,122,105,127,99,115)(94,112,108,118,103,121,96,114,123,113,124,128,107,110,102,119)(129,131,130), (1,7)(2,16)(3,8)(4,25)(5,35)(6,39)(9,43)(10,15)(11,44)(12,13)(14,55)(17,61)(18,21)(19,38)(20,29)(22,45)(23,46)(24,42)(26,60)(27,72)(28,59)(30,54)(31,68)(32,51)(33,86)(34,73)(36,80)(37,41)(40,89)(47,92)(48,62)(49,52)(50,58)(53,69)(56,65)(57,78)(63,70)(64,67)(66,81)(71,93)(74,87)(75,97)(76,109)(77,79)(82,98)(83,99)(84,100)(85,91)(88,95)(90,104)(94,123)(96,102)(101,105)(103,107)(106,117)(108,124)(110,121)(111,125)(112,113)(114,119)(115,116)(118,128)(120,127)(122,126), (1,2,3,13,7,16,8,12)(4,14,20,51,25,55,29,32)(5,15,21,46,35,10,18,23)(6,11,19,24,39,44,38,42)(9,17,22,52,43,61,45,49)(26,53,34,37,60,69,73,41)(27,54,65,81,72,30,56,66)(28,31,57,36,59,68,78,80)(33,58,67,89,86,50,64,40)(47,62,70,93,92,48,63,71)(74,98,104,91,87,82,90,85)(75,77,100,88,97,79,84,95)(76,99,105,117,109,83,101,106)(94,102,107,124,123,96,103,108)(110,128,113,114,121,118,112,119)(111,115,127,122,125,116,120,126) );
 
Copy content sage:G = PermutationGroup(['(1,2)(3,12)(4,25)(5,18)(6,38)(7,16)(8,13)(9,45)(10,15)(11,44)(14,51)(17,61)(19,39)(21,35)(22,43)(26,41)(27,54)(28,31)(30,72)(32,55)(33,58)(34,69)(36,78)(37,60)(40,67)(47,93)(48,63)(50,86)(53,73)(56,81)(57,80)(59,68)(62,70)(64,89)(65,66)(71,92)(74,87)(75,84)(76,101)(77,79)(82,85)(83,99)(91,98)(94,103)(96,102)(97,100)(105,109)(107,123)(110,119)(111,122)(112,128)(113,118)(114,121)(115,127)(116,120)(125,126)', '(1,3,7,8)(2,13,16,12)(4,20,25,29)(5,21,35,18)(6,19,39,38)(9,22,43,45)(10,23,15,46)(11,24,44,42)(14,51,55,32)(17,52,61,49)(26,34,60,73)(27,65,72,56)(28,57,59,78)(30,66,54,81)(31,36,68,80)(33,67,86,64)(37,69,41,53)(40,58,89,50)(47,70,92,63)(48,71,62,93)(74,104,87,90)(75,100,97,84)(76,105,109,101)(77,88,79,95)(82,85,98,91)(83,106,99,117)(94,107,123,103)(96,108,102,124)(110,113,121,112)(111,127,125,120)(114,118,119,128)(115,122,116,126)', '(129,130,131)', '(1,4,26,45,8,29,73,43,7,25,60,22,3,20,34,9)(2,14,53,49,12,32,41,61,16,55,69,52,13,51,37,17)(5,33,11,31,18,64,42,80,35,86,44,68,21,67,24,36)(6,28,10,50,38,78,46,89,39,59,15,58,19,57,23,40)(27,74,110,101,56,90,112,109,72,87,121,105,65,104,113,76)(30,82,118,117,81,91,114,99,54,98,128,106,66,85,119,83)(47,94,116,79,63,103,122,88,92,123,115,77,70,107,126,95)(48,96,127,100,93,124,111,75,62,102,120,84,71,108,125,97)', '(1,5,13,46,8,18,2,15,7,35,12,23,3,21,16,10)(4,27,51,81,29,56,14,54,25,72,32,66,20,65,55,30)(6,34,24,69,38,26,11,37,39,73,42,53,19,60,44,41)(9,47,52,93,45,63,17,62,43,92,49,71,22,70,61,48)(28,75,36,88,78,84,31,77,59,97,80,95,57,100,68,79)(33,85,89,104,64,82,58,74,86,91,40,90,67,98,50,87)(76,112,117,128,101,121,99,119,109,113,106,118,105,110,83,114)(94,125,124,126,103,127,102,116,123,111,108,122,107,120,96,115)(129,131,130)', '(1,6,12,42,8,38,16,44,7,39,13,24,3,19,2,11)(4,28,32,80,29,78,55,68,25,59,51,36,20,57,14,31)(5,34,23,53,18,26,10,41,35,73,46,69,21,60,15,37)(9,40,49,64,45,50,61,86,43,89,52,67,22,58,17,33)(27,75,66,95,56,84,30,79,72,97,81,88,65,100,54,77)(47,90,71,82,63,87,48,91,92,104,93,98,70,74,62,85)(76,111,106,126,101,120,83,116,109,125,117,122,105,127,99,115)(94,112,108,118,103,121,96,114,123,113,124,128,107,110,102,119)(129,131,130)', '(1,7)(2,16)(3,8)(4,25)(5,35)(6,39)(9,43)(10,15)(11,44)(12,13)(14,55)(17,61)(18,21)(19,38)(20,29)(22,45)(23,46)(24,42)(26,60)(27,72)(28,59)(30,54)(31,68)(32,51)(33,86)(34,73)(36,80)(37,41)(40,89)(47,92)(48,62)(49,52)(50,58)(53,69)(56,65)(57,78)(63,70)(64,67)(66,81)(71,93)(74,87)(75,97)(76,109)(77,79)(82,98)(83,99)(84,100)(85,91)(88,95)(90,104)(94,123)(96,102)(101,105)(103,107)(106,117)(108,124)(110,121)(111,125)(112,113)(114,119)(115,116)(118,128)(120,127)(122,126)', '(1,2,3,13,7,16,8,12)(4,14,20,51,25,55,29,32)(5,15,21,46,35,10,18,23)(6,11,19,24,39,44,38,42)(9,17,22,52,43,61,45,49)(26,53,34,37,60,69,73,41)(27,54,65,81,72,30,56,66)(28,31,57,36,59,68,78,80)(33,58,67,89,86,50,64,40)(47,62,70,93,92,48,63,71)(74,98,104,91,87,82,90,85)(75,77,100,88,97,79,84,95)(76,99,105,117,109,83,101,106)(94,102,107,124,123,96,103,108)(110,128,113,114,121,118,112,119)(111,115,127,122,125,116,120,126)'])
 

Group information

Description:$C_3\times \SL(2,7).D_8$
Order: \(16128\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 7 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$(C_2\times C_4).C_2^4.\SO(3,7)$, of order \(43008\)\(\medspace = 2^{11} \cdot 3 \cdot 7 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 5, $C_3$, $\PSL(2,7)$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and nonsolvable.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 7 8 12 14 16 21 24 28 42 48 56 84 112 168 336
Elements 1 219 170 388 1950 48 928 2456 432 512 96 2528 480 864 2368 192 960 384 384 768 16128
Conjugacy classes   1 4 5 6 14 2 8 18 4 10 4 22 4 8 32 4 8 8 8 16 186
Divisions 1 4 3 6 8 1 6 10 2 3 1 8 2 2 5 1 2 1 1 1 68
Autjugacy classes 1 4 3 5 8 1 7 9 2 3 1 9 2 2 5 1 2 1 1 1 68

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 3 4 6 7 8 12 14 16 24 28 32 48 56 64 96 128
Irr. complex chars.   12 9 24 0 30 12 36 33 9 21 0 0 0 0 0 0 0 0 186
Irr. rational chars. 4 5 0 2 8 4 5 10 5 5 4 2 2 4 1 3 2 2 68

Minimal presentations

Permutation degree:$131$
Transitive degree:$384$
Rank: $2$
Inequivalent generating pairs: $1368$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 8 16 96
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Permutation group:Degree $131$ $\langle(1,2)(3,12)(4,25)(5,18)(6,38)(7,16)(8,13)(9,45)(10,15)(11,44)(14,51)(17,61) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 131 | (1,2)(3,12)(4,25)(5,18)(6,38)(7,16)(8,13)(9,45)(10,15)(11,44)(14,51)(17,61)(19,39)(21,35)(22,43)(26,41)(27,54)(28,31)(30,72)(32,55)(33,58)(34,69)(36,78)(37,60)(40,67)(47,93)(48,63)(50,86)(53,73)(56,81)(57,80)(59,68)(62,70)(64,89)(65,66)(71,92)(74,87)(75,84)(76,101)(77,79)(82,85)(83,99)(91,98)(94,103)(96,102)(97,100)(105,109)(107,123)(110,119)(111,122)(112,128)(113,118)(114,121)(115,127)(116,120)(125,126), (1,3,7,8)(2,13,16,12)(4,20,25,29)(5,21,35,18)(6,19,39,38)(9,22,43,45)(10,23,15,46)(11,24,44,42)(14,51,55,32)(17,52,61,49)(26,34,60,73)(27,65,72,56)(28,57,59,78)(30,66,54,81)(31,36,68,80)(33,67,86,64)(37,69,41,53)(40,58,89,50)(47,70,92,63)(48,71,62,93)(74,104,87,90)(75,100,97,84)(76,105,109,101)(77,88,79,95)(82,85,98,91)(83,106,99,117)(94,107,123,103)(96,108,102,124)(110,113,121,112)(111,127,125,120)(114,118,119,128)(115,122,116,126), (129,130,131), (1,4,26,45,8,29,73,43,7,25,60,22,3,20,34,9)(2,14,53,49,12,32,41,61,16,55,69,52,13,51,37,17)(5,33,11,31,18,64,42,80,35,86,44,68,21,67,24,36)(6,28,10,50,38,78,46,89,39,59,15,58,19,57,23,40)(27,74,110,101,56,90,112,109,72,87,121,105,65,104,113,76)(30,82,118,117,81,91,114,99,54,98,128,106,66,85,119,83)(47,94,116,79,63,103,122,88,92,123,115,77,70,107,126,95)(48,96,127,100,93,124,111,75,62,102,120,84,71,108,125,97), (1,5,13,46,8,18,2,15,7,35,12,23,3,21,16,10)(4,27,51,81,29,56,14,54,25,72,32,66,20,65,55,30)(6,34,24,69,38,26,11,37,39,73,42,53,19,60,44,41)(9,47,52,93,45,63,17,62,43,92,49,71,22,70,61,48)(28,75,36,88,78,84,31,77,59,97,80,95,57,100,68,79)(33,85,89,104,64,82,58,74,86,91,40,90,67,98,50,87)(76,112,117,128,101,121,99,119,109,113,106,118,105,110,83,114)(94,125,124,126,103,127,102,116,123,111,108,122,107,120,96,115)(129,131,130), (1,6,12,42,8,38,16,44,7,39,13,24,3,19,2,11)(4,28,32,80,29,78,55,68,25,59,51,36,20,57,14,31)(5,34,23,53,18,26,10,41,35,73,46,69,21,60,15,37)(9,40,49,64,45,50,61,86,43,89,52,67,22,58,17,33)(27,75,66,95,56,84,30,79,72,97,81,88,65,100,54,77)(47,90,71,82,63,87,48,91,92,104,93,98,70,74,62,85)(76,111,106,126,101,120,83,116,109,125,117,122,105,127,99,115)(94,112,108,118,103,121,96,114,123,113,124,128,107,110,102,119)(129,131,130), (1,7)(2,16)(3,8)(4,25)(5,35)(6,39)(9,43)(10,15)(11,44)(12,13)(14,55)(17,61)(18,21)(19,38)(20,29)(22,45)(23,46)(24,42)(26,60)(27,72)(28,59)(30,54)(31,68)(32,51)(33,86)(34,73)(36,80)(37,41)(40,89)(47,92)(48,62)(49,52)(50,58)(53,69)(56,65)(57,78)(63,70)(64,67)(66,81)(71,93)(74,87)(75,97)(76,109)(77,79)(82,98)(83,99)(84,100)(85,91)(88,95)(90,104)(94,123)(96,102)(101,105)(103,107)(106,117)(108,124)(110,121)(111,125)(112,113)(114,119)(115,116)(118,128)(120,127)(122,126), (1,2,3,13,7,16,8,12)(4,14,20,51,25,55,29,32)(5,15,21,46,35,10,18,23)(6,11,19,24,39,44,38,42)(9,17,22,52,43,61,45,49)(26,53,34,37,60,69,73,41)(27,54,65,81,72,30,56,66)(28,31,57,36,59,68,78,80)(33,58,67,89,86,50,64,40)(47,62,70,93,92,48,63,71)(74,98,104,91,87,82,90,85)(75,77,100,88,97,79,84,95)(76,99,105,117,109,83,101,106)(94,102,107,124,123,96,103,108)(110,128,113,114,121,118,112,119)(111,115,127,122,125,116,120,126) >;
 
Copy content gap:G := Group( (1,2)(3,12)(4,25)(5,18)(6,38)(7,16)(8,13)(9,45)(10,15)(11,44)(14,51)(17,61)(19,39)(21,35)(22,43)(26,41)(27,54)(28,31)(30,72)(32,55)(33,58)(34,69)(36,78)(37,60)(40,67)(47,93)(48,63)(50,86)(53,73)(56,81)(57,80)(59,68)(62,70)(64,89)(65,66)(71,92)(74,87)(75,84)(76,101)(77,79)(82,85)(83,99)(91,98)(94,103)(96,102)(97,100)(105,109)(107,123)(110,119)(111,122)(112,128)(113,118)(114,121)(115,127)(116,120)(125,126), (1,3,7,8)(2,13,16,12)(4,20,25,29)(5,21,35,18)(6,19,39,38)(9,22,43,45)(10,23,15,46)(11,24,44,42)(14,51,55,32)(17,52,61,49)(26,34,60,73)(27,65,72,56)(28,57,59,78)(30,66,54,81)(31,36,68,80)(33,67,86,64)(37,69,41,53)(40,58,89,50)(47,70,92,63)(48,71,62,93)(74,104,87,90)(75,100,97,84)(76,105,109,101)(77,88,79,95)(82,85,98,91)(83,106,99,117)(94,107,123,103)(96,108,102,124)(110,113,121,112)(111,127,125,120)(114,118,119,128)(115,122,116,126), (129,130,131), (1,4,26,45,8,29,73,43,7,25,60,22,3,20,34,9)(2,14,53,49,12,32,41,61,16,55,69,52,13,51,37,17)(5,33,11,31,18,64,42,80,35,86,44,68,21,67,24,36)(6,28,10,50,38,78,46,89,39,59,15,58,19,57,23,40)(27,74,110,101,56,90,112,109,72,87,121,105,65,104,113,76)(30,82,118,117,81,91,114,99,54,98,128,106,66,85,119,83)(47,94,116,79,63,103,122,88,92,123,115,77,70,107,126,95)(48,96,127,100,93,124,111,75,62,102,120,84,71,108,125,97), (1,5,13,46,8,18,2,15,7,35,12,23,3,21,16,10)(4,27,51,81,29,56,14,54,25,72,32,66,20,65,55,30)(6,34,24,69,38,26,11,37,39,73,42,53,19,60,44,41)(9,47,52,93,45,63,17,62,43,92,49,71,22,70,61,48)(28,75,36,88,78,84,31,77,59,97,80,95,57,100,68,79)(33,85,89,104,64,82,58,74,86,91,40,90,67,98,50,87)(76,112,117,128,101,121,99,119,109,113,106,118,105,110,83,114)(94,125,124,126,103,127,102,116,123,111,108,122,107,120,96,115)(129,131,130), (1,6,12,42,8,38,16,44,7,39,13,24,3,19,2,11)(4,28,32,80,29,78,55,68,25,59,51,36,20,57,14,31)(5,34,23,53,18,26,10,41,35,73,46,69,21,60,15,37)(9,40,49,64,45,50,61,86,43,89,52,67,22,58,17,33)(27,75,66,95,56,84,30,79,72,97,81,88,65,100,54,77)(47,90,71,82,63,87,48,91,92,104,93,98,70,74,62,85)(76,111,106,126,101,120,83,116,109,125,117,122,105,127,99,115)(94,112,108,118,103,121,96,114,123,113,124,128,107,110,102,119)(129,131,130), (1,7)(2,16)(3,8)(4,25)(5,35)(6,39)(9,43)(10,15)(11,44)(12,13)(14,55)(17,61)(18,21)(19,38)(20,29)(22,45)(23,46)(24,42)(26,60)(27,72)(28,59)(30,54)(31,68)(32,51)(33,86)(34,73)(36,80)(37,41)(40,89)(47,92)(48,62)(49,52)(50,58)(53,69)(56,65)(57,78)(63,70)(64,67)(66,81)(71,93)(74,87)(75,97)(76,109)(77,79)(82,98)(83,99)(84,100)(85,91)(88,95)(90,104)(94,123)(96,102)(101,105)(103,107)(106,117)(108,124)(110,121)(111,125)(112,113)(114,119)(115,116)(118,128)(120,127)(122,126), (1,2,3,13,7,16,8,12)(4,14,20,51,25,55,29,32)(5,15,21,46,35,10,18,23)(6,11,19,24,39,44,38,42)(9,17,22,52,43,61,45,49)(26,53,34,37,60,69,73,41)(27,54,65,81,72,30,56,66)(28,31,57,36,59,68,78,80)(33,58,67,89,86,50,64,40)(47,62,70,93,92,48,63,71)(74,98,104,91,87,82,90,85)(75,77,100,88,97,79,84,95)(76,99,105,117,109,83,101,106)(94,102,107,124,123,96,103,108)(110,128,113,114,121,118,112,119)(111,115,127,122,125,116,120,126) );
 
Copy content sage:G = PermutationGroup(['(1,2)(3,12)(4,25)(5,18)(6,38)(7,16)(8,13)(9,45)(10,15)(11,44)(14,51)(17,61)(19,39)(21,35)(22,43)(26,41)(27,54)(28,31)(30,72)(32,55)(33,58)(34,69)(36,78)(37,60)(40,67)(47,93)(48,63)(50,86)(53,73)(56,81)(57,80)(59,68)(62,70)(64,89)(65,66)(71,92)(74,87)(75,84)(76,101)(77,79)(82,85)(83,99)(91,98)(94,103)(96,102)(97,100)(105,109)(107,123)(110,119)(111,122)(112,128)(113,118)(114,121)(115,127)(116,120)(125,126)', '(1,3,7,8)(2,13,16,12)(4,20,25,29)(5,21,35,18)(6,19,39,38)(9,22,43,45)(10,23,15,46)(11,24,44,42)(14,51,55,32)(17,52,61,49)(26,34,60,73)(27,65,72,56)(28,57,59,78)(30,66,54,81)(31,36,68,80)(33,67,86,64)(37,69,41,53)(40,58,89,50)(47,70,92,63)(48,71,62,93)(74,104,87,90)(75,100,97,84)(76,105,109,101)(77,88,79,95)(82,85,98,91)(83,106,99,117)(94,107,123,103)(96,108,102,124)(110,113,121,112)(111,127,125,120)(114,118,119,128)(115,122,116,126)', '(129,130,131)', '(1,4,26,45,8,29,73,43,7,25,60,22,3,20,34,9)(2,14,53,49,12,32,41,61,16,55,69,52,13,51,37,17)(5,33,11,31,18,64,42,80,35,86,44,68,21,67,24,36)(6,28,10,50,38,78,46,89,39,59,15,58,19,57,23,40)(27,74,110,101,56,90,112,109,72,87,121,105,65,104,113,76)(30,82,118,117,81,91,114,99,54,98,128,106,66,85,119,83)(47,94,116,79,63,103,122,88,92,123,115,77,70,107,126,95)(48,96,127,100,93,124,111,75,62,102,120,84,71,108,125,97)', '(1,5,13,46,8,18,2,15,7,35,12,23,3,21,16,10)(4,27,51,81,29,56,14,54,25,72,32,66,20,65,55,30)(6,34,24,69,38,26,11,37,39,73,42,53,19,60,44,41)(9,47,52,93,45,63,17,62,43,92,49,71,22,70,61,48)(28,75,36,88,78,84,31,77,59,97,80,95,57,100,68,79)(33,85,89,104,64,82,58,74,86,91,40,90,67,98,50,87)(76,112,117,128,101,121,99,119,109,113,106,118,105,110,83,114)(94,125,124,126,103,127,102,116,123,111,108,122,107,120,96,115)(129,131,130)', '(1,6,12,42,8,38,16,44,7,39,13,24,3,19,2,11)(4,28,32,80,29,78,55,68,25,59,51,36,20,57,14,31)(5,34,23,53,18,26,10,41,35,73,46,69,21,60,15,37)(9,40,49,64,45,50,61,86,43,89,52,67,22,58,17,33)(27,75,66,95,56,84,30,79,72,97,81,88,65,100,54,77)(47,90,71,82,63,87,48,91,92,104,93,98,70,74,62,85)(76,111,106,126,101,120,83,116,109,125,117,122,105,127,99,115)(94,112,108,118,103,121,96,114,123,113,124,128,107,110,102,119)(129,131,130)', '(1,7)(2,16)(3,8)(4,25)(5,35)(6,39)(9,43)(10,15)(11,44)(12,13)(14,55)(17,61)(18,21)(19,38)(20,29)(22,45)(23,46)(24,42)(26,60)(27,72)(28,59)(30,54)(31,68)(32,51)(33,86)(34,73)(36,80)(37,41)(40,89)(47,92)(48,62)(49,52)(50,58)(53,69)(56,65)(57,78)(63,70)(64,67)(66,81)(71,93)(74,87)(75,97)(76,109)(77,79)(82,98)(83,99)(84,100)(85,91)(88,95)(90,104)(94,123)(96,102)(101,105)(103,107)(106,117)(108,124)(110,121)(111,125)(112,113)(114,119)(115,116)(118,128)(120,127)(122,126)', '(1,2,3,13,7,16,8,12)(4,14,20,51,25,55,29,32)(5,15,21,46,35,10,18,23)(6,11,19,24,39,44,38,42)(9,17,22,52,43,61,45,49)(26,53,34,37,60,69,73,41)(27,54,65,81,72,30,56,66)(28,31,57,36,59,68,78,80)(33,58,67,89,86,50,64,40)(47,62,70,93,92,48,63,71)(74,98,104,91,87,82,90,85)(75,77,100,88,97,79,84,95)(76,99,105,117,109,83,101,106)(94,102,107,124,123,96,103,108)(110,128,113,114,121,118,112,119)(111,115,127,122,125,116,120,126)'])
 
Matrix group:$\left\langle \left(\begin{array}{rrrr} 6 & 2 & 4 & 0 \\ 5 & 1 & 0 & 3 \\ 1 & 0 & 1 & 2 \\ 0 & 6 & 5 & 6 \end{array}\right), \left(\begin{array}{rrrr} 6 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 6 \end{array}\right), \left(\begin{array}{rrrr} 2 & 5 & 4 & 2 \\ 3 & 6 & 3 & 4 \\ 1 & 0 & 1 & 2 \\ 2 & 1 & 4 & 5 \end{array}\right), \left(\begin{array}{rrrr} 0 & 1 & 6 & 6 \\ 0 & 2 & 5 & 1 \\ 3 & 6 & 5 & 2 \\ 1 & 2 & 2 & 0 \end{array}\right), \left(\begin{array}{rrrr} 2 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 \\ 0 & 0 & 2 & 0 \\ 0 & 0 & 0 & 2 \end{array}\right), \left(\begin{array}{rrrr} 1 & 6 & 4 & 0 \\ 2 & 0 & 1 & 1 \\ 5 & 6 & 2 & 5 \\ 3 & 6 & 6 & 1 \end{array}\right), \left(\begin{array}{rrrr} 3 & 2 & 3 & 5 \\ 4 & 6 & 4 & 3 \\ 6 & 0 & 4 & 5 \\ 5 & 6 & 3 & 0 \end{array}\right), \left(\begin{array}{rrrr} 1 & 4 & 6 & 3 \\ 1 & 0 & 1 & 6 \\ 5 & 0 & 3 & 3 \\ 3 & 5 & 6 & 2 \end{array}\right) \right\rangle \subseteq \GL_{4}(\F_{7})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 4, GF(7) | [[6, 2, 4, 0, 5, 1, 0, 3, 1, 0, 1, 2, 0, 6, 5, 6], [6, 0, 0, 0, 0, 6, 0, 0, 0, 0, 6, 0, 0, 0, 0, 6], [2, 5, 4, 2, 3, 6, 3, 4, 1, 0, 1, 2, 2, 1, 4, 5], [0, 1, 6, 6, 0, 2, 5, 1, 3, 6, 5, 2, 1, 2, 2, 0], [2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2, 0, 0, 0, 0, 2], [1, 6, 4, 0, 2, 0, 1, 1, 5, 6, 2, 5, 3, 6, 6, 1], [3, 2, 3, 5, 4, 6, 4, 3, 6, 0, 4, 5, 5, 6, 3, 0], [1, 4, 6, 3, 1, 0, 1, 6, 5, 0, 3, 3, 3, 5, 6, 2]] >;
 
Copy content gap:G := Group([[[ Z(7)^3, Z(7)^2, Z(7)^4, 0*Z(7) ], [ Z(7)^5, Z(7)^0, 0*Z(7), Z(7) ], [ Z(7)^0, 0*Z(7), Z(7)^0, Z(7)^2 ], [ 0*Z(7), Z(7)^3, Z(7)^5, Z(7)^3 ]], [[ Z(7)^3, 0*Z(7), 0*Z(7), 0*Z(7) ], [ 0*Z(7), Z(7)^3, 0*Z(7), 0*Z(7) ], [ 0*Z(7), 0*Z(7), Z(7)^3, 0*Z(7) ], [ 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^3 ]], [[ Z(7)^2, Z(7)^5, Z(7)^4, Z(7)^2 ], [ Z(7), Z(7)^3, Z(7), Z(7)^4 ], [ Z(7)^0, 0*Z(7), Z(7)^0, Z(7)^2 ], [ Z(7)^2, Z(7)^0, Z(7)^4, Z(7)^5 ]], [[ 0*Z(7), Z(7)^0, Z(7)^3, Z(7)^3 ], [ 0*Z(7), Z(7)^2, Z(7)^5, Z(7)^0 ], [ Z(7), Z(7)^3, Z(7)^5, Z(7)^2 ], [ Z(7)^0, Z(7)^2, Z(7)^2, 0*Z(7) ]], [[ Z(7)^2, 0*Z(7), 0*Z(7), 0*Z(7) ], [ 0*Z(7), Z(7)^2, 0*Z(7), 0*Z(7) ], [ 0*Z(7), 0*Z(7), Z(7)^2, 0*Z(7) ], [ 0*Z(7), 0*Z(7), 0*Z(7), Z(7)^2 ]], [[ Z(7)^0, Z(7)^3, Z(7)^4, 0*Z(7) ], [ Z(7)^2, 0*Z(7), Z(7)^0, Z(7)^0 ], [ Z(7)^5, Z(7)^3, Z(7)^2, Z(7)^5 ], [ Z(7), Z(7)^3, Z(7)^3, Z(7)^0 ]], [[ Z(7), Z(7)^2, Z(7), Z(7)^5 ], [ Z(7)^4, Z(7)^3, Z(7)^4, Z(7) ], [ Z(7)^3, 0*Z(7), Z(7)^4, Z(7)^5 ], [ Z(7)^5, Z(7)^3, Z(7), 0*Z(7) ]], [[ Z(7)^0, Z(7)^4, Z(7)^3, Z(7) ], [ Z(7)^0, 0*Z(7), Z(7)^0, Z(7)^3 ], [ Z(7)^5, 0*Z(7), Z(7), Z(7) ], [ Z(7), Z(7)^5, Z(7)^3, Z(7)^2 ]]]);
 
Copy content sage:MS = MatrixSpace(GF(7), 4, 4) G = MatrixGroup([MS([[6, 2, 4, 0], [5, 1, 0, 3], [1, 0, 1, 2], [0, 6, 5, 6]]), MS([[6, 0, 0, 0], [0, 6, 0, 0], [0, 0, 6, 0], [0, 0, 0, 6]]), MS([[2, 5, 4, 2], [3, 6, 3, 4], [1, 0, 1, 2], [2, 1, 4, 5]]), MS([[0, 1, 6, 6], [0, 2, 5, 1], [3, 6, 5, 2], [1, 2, 2, 0]]), MS([[2, 0, 0, 0], [0, 2, 0, 0], [0, 0, 2, 0], [0, 0, 0, 2]]), MS([[1, 6, 4, 0], [2, 0, 1, 1], [5, 6, 2, 5], [3, 6, 6, 1]]), MS([[3, 2, 3, 5], [4, 6, 4, 3], [6, 0, 4, 5], [5, 6, 3, 0]]), MS([[1, 4, 6, 3], [1, 0, 1, 6], [5, 0, 3, 3], [3, 5, 6, 2]])])
 
Direct product: $C_3$ $\, \times\, $ $(\SL(2,7).D_8)$
Semidirect product: $(D_8.\PSL(2,7))$ $\,\rtimes\,$ $C_6$ $(Q_{16}.\PSL(2,7))$ $\,\rtimes\,$ $C_6$ $(C_{48}.\PSL(2,7))$ $\,\rtimes\,$ $C_2$ $(C_{16}.\PSL(2,7))$ $\,\rtimes\,$ $C_6$ all 6
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Non-split product: $(\SL(2,7):C_6)$ . $D_4$ $(C_3\times \SL(2,7))$ . $D_8$ $\SL(2,7)$ . $(C_3\times D_8)$ $D_8$ . $(C_6\times \GL(3,2))$ all 20

Elements of the group are displayed as matrices in $\GL_{4}(\F_{7})$.

Homology

Abelianization: $C_{2} \times C_{6} \simeq C_{2}^{2} \times C_{3}$
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 30208 subgroups in 815 conjugacy classes, 30 normal, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_6$ $G/Z \simeq$ $D_8\times \GL(3,2)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $\SL(2,7):C_4$ $G/G' \simeq$ $C_2\times C_6$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_{24}$ $G/\Phi \simeq$ $C_2^2\times \GL(3,2)$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_3\times \SD_{32}$ $G/\operatorname{Fit} \simeq$ $\PSL(2,7)$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_3\times \SD_{32}$ $G/R \simeq$ $\PSL(2,7)$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_6$ $G/\operatorname{soc} \simeq$ $D_8\times \GL(3,2)$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $D_{16}:D_4$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^2$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7$

Subgroup diagram and profile

Series

Derived series $C_3\times \SL(2,7).D_8$ $\rhd$ $\SL(2,7):C_4$ $\rhd$ $\SL(2,7)$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $C_3\times \SL(2,7).D_8$ $\rhd$ $C_3\times \SD_{32}$ $\rhd$ $C_3\times D_8$ $\rhd$ $C_{24}$ $\rhd$ $C_8$ $\rhd$ $C_4$ $\rhd$ $C_2$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $C_3\times \SL(2,7).D_8$ $\rhd$ $\SL(2,7):C_4$ $\rhd$ $\SL(2,7):C_2$ $\rhd$ $\SL(2,7)$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$ $\lhd$ $C_6$ $\lhd$ $C_{12}$ $\lhd$ $C_{24}$ $\lhd$ $C_3\times \SD_{32}$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 1 larger groups in the database.

This group is a maximal quotient of 0 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $186 \times 186$ character table (warning: may be slow to load). Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $68 \times 68$ rational character table.