Properties

Label 16128.bb.2688.a1.a1
Order $ 2 \cdot 3 $
Index $ 2^{7} \cdot 3 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_6$
Order: \(6\)\(\medspace = 2 \cdot 3 \)
Index: \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
Exponent: \(6\)\(\medspace = 2 \cdot 3 \)
Generators: $\left(\begin{array}{rrrr} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{array}\right), \left(\begin{array}{rrrr} 6 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 6 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the center (hence characteristic, normal, abelian, central, nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), the socle, and cyclic (hence elementary ($p = 2,3$), hyperelementary, metacyclic, and a Z-group).

Ambient group ($G$) information

Description: $C_3\times \SL(2,7).D_8$
Order: \(16128\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 7 \)
Exponent: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $D_8\times \GL(3,2)$
Order: \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
Exponent: \(168\)\(\medspace = 2^{3} \cdot 3 \cdot 7 \)
Automorphism Group: $C_8:C_2^2.\SO(3,7)$
Outer Automorphisms: $C_2^3$, of order \(8\)\(\medspace = 2^{3} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian and nonsolvable.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_4).C_2^4.\SO(3,7)$
$\operatorname{Aut}(H)$ $C_2$, of order \(2\)
$W$$C_1$, of order $1$

Related subgroups

Centralizer:$C_3\times \SL(2,7).D_8$
Normalizer:$C_3\times \SL(2,7).D_8$
Minimal over-subgroups:$C_{42}$$C_3\times C_6$$C_{12}$$C_2\times C_6$$C_2\times C_6$$C_2\times C_6$$C_{12}$$C_{12}$$C_{12}$
Maximal under-subgroups:$C_3$$C_2$

Other information

Möbius function not computed
Projective image$D_8\times \GL(3,2)$