Properties

Label 16128.bb.1344.a1.a1
Order $ 2^{2} \cdot 3 $
Index $ 2^{6} \cdot 3 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{12}$
Order: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Index: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(12\)\(\medspace = 2^{2} \cdot 3 \)
Generators: $\left(\begin{array}{rrrr} 4 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 \\ 0 & 0 & 4 & 0 \\ 0 & 0 & 0 & 4 \end{array}\right), \left(\begin{array}{rrrr} 5 & 2 & 3 & 5 \\ 4 & 1 & 4 & 3 \\ 6 & 0 & 6 & 5 \\ 5 & 6 & 3 & 2 \end{array}\right), \left(\begin{array}{rrrr} 6 & 0 & 0 & 0 \\ 0 & 6 & 0 & 0 \\ 0 & 0 & 6 & 0 \\ 0 & 0 & 0 & 6 \end{array}\right)$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal) and cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,3$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Ambient group ($G$) information

Description: $C_3\times \SL(2,7).D_8$
Order: \(16128\)\(\medspace = 2^{8} \cdot 3^{2} \cdot 7 \)
Exponent: \(336\)\(\medspace = 2^{4} \cdot 3 \cdot 7 \)
Derived length:$2$

The ambient group is nonabelian and nonsolvable.

Quotient group ($Q$) structure

Description: $D_4\times \GL(3,2)$
Order: \(1344\)\(\medspace = 2^{6} \cdot 3 \cdot 7 \)
Exponent: \(84\)\(\medspace = 2^{2} \cdot 3 \cdot 7 \)
Automorphism Group: $D_4\times \PGL(2,7)$, of order \(2688\)\(\medspace = 2^{7} \cdot 3 \cdot 7 \)
Outer Automorphisms: $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
Nilpotency class: $-1$
Derived length: $2$

The quotient is nonabelian and nonsolvable.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$(C_2\times C_4).C_2^4.\SO(3,7)$
$\operatorname{Aut}(H)$ $C_2^2$, of order \(4\)\(\medspace = 2^{2} \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{48}.\PSL(2,7)$
Normalizer:$C_3\times \SL(2,7).D_8$
Minimal over-subgroups:$C_{84}$$C_3\times C_{12}$$C_{24}$$C_3\times D_4$$C_2\times C_{12}$$C_3\times D_4$$C_3\times Q_8$$C_3\times Q_8$$C_{24}$
Maximal under-subgroups:$C_6$$C_4$

Other information

Möbius function not computed
Projective image$D_8\times \GL(3,2)$