Subgroup ($H$) information
Description: | $C_5^2$ |
Order: | \(25\)\(\medspace = 5^{2} \) |
Index: | \(5040\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5 \cdot 7 \) |
Exponent: | \(5\) |
Generators: |
$\left[ \left(\begin{array}{rrr}
12 & 15 & 19 \\
19 & 15 & 0 \\
12 & 19 & 14
\end{array}\right) \right], \left[ \left(\begin{array}{rrr}
21 & 23 & 15 \\
15 & 2 & 7 \\
15 & 15 & 8
\end{array}\right) \right]$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is abelian (hence nilpotent, solvable, supersolvable, monomial, metabelian, and an A-group), a $p$-group (hence elementary and hyperelementary), and metacyclic.
Ambient group ($G$) information
Description: | $\PSU(3,5)$ |
Order: | \(126000\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7 \) |
Exponent: | \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \) |
Derived length: | $0$ |
The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).
Automorphism information
While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.
$\operatorname{Aut}(G)$ | $\PGammaU(3,5)$, of order \(756000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \cdot 7 \) |
$\operatorname{Aut}(H)$ | $\GL(2,5)$, of order \(480\)\(\medspace = 2^{5} \cdot 3 \cdot 5 \) |
$W$ | $F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \) |
Related subgroups
Other information
Number of subgroups in this conjugacy class | $252$ |
Möbius function | $0$ |
Projective image | $\PSU(3,5)$ |