Properties

Label 126000.a
Order \( 2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7 \)
Exponent \( 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Simple yes
$\card{G^{\mathrm{ab}}}$ \( 1 \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{5} \cdot 3^{3} \cdot 5^{3} \cdot 7 \)
$\card{\mathrm{Out}(G)}$ \( 2 \cdot 3 \)
Perm deg. $50$
Trans deg. $50$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content magma:G := PSU(3, 5);
 
Copy content gap:G := PSU(3, 5);
 
Copy content comment:Define the group as a permutation group
 
Copy content sage:G = PermutationGroup(['(1,3,7,15,24)(2,5,11,19,28)(4,9,17,26,27)(6,13,23,34,42)(8,14,16,25,36)(12,21,22,32,33)(20,29,38,47,41)(31,39,48,37,45)(35,43,44,46,50)', '(1,2,4,8,16,23,33,15)(3,6,12,20,28,17,7,14)(5,10,18,19,27,38,46,25)(9,13,22,31,41,29,39,11)(21,30,40,32,36,44,47,34)(24,35)(26,37,42,49)(43,48,45,50)'])
 

Group information

Description:$\PSU(3,5)$
Order: \(126000\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$\PGammaU(3,5)$, of order \(756000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \cdot 7 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$\PSU(3,5)$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$0$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 5 6 7 8 10
Elements 1 525 3500 15750 15624 10500 36000 31500 12600 126000
Conjugacy classes   1 1 1 1 4 1 2 2 1 14
Divisions 1 1 1 1 4 1 1 1 1 12
Autjugacy classes 1 1 1 1 2 1 1 1 1 10

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 20 21 28 84 105 125 126 144 252 288
Irr. complex chars.   1 1 1 3 1 1 1 3 2 0 0 14
Irr. rational chars. 1 1 1 3 1 1 1 1 0 1 1 12

Minimal presentations

Permutation degree:$50$
Transitive degree:$50$
Rank: $2$
Inequivalent generating pairs: $19483$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 20 21 21
Arbitrary 20 21 21

Constructions

Show commands: Gap / Magma / SageMath


Groups of Lie type:$\PSU(3,5)$
Permutation group:Degree $50$ $\langle(1,3,7,15,24)(2,5,11,19,28)(4,9,17,26,27)(6,13,23,34,42)(8,14,16,25,36) \!\cdots\! \rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 50 | (1,3,7,15,24)(2,5,11,19,28)(4,9,17,26,27)(6,13,23,34,42)(8,14,16,25,36)(12,21,22,32,33)(20,29,38,47,41)(31,39,48,37,45)(35,43,44,46,50), (1,2,4,8,16,23,33,15)(3,6,12,20,28,17,7,14)(5,10,18,19,27,38,46,25)(9,13,22,31,41,29,39,11)(21,30,40,32,36,44,47,34)(24,35)(26,37,42,49)(43,48,45,50) >;
 
Copy content gap:G := Group( (1,3,7,15,24)(2,5,11,19,28)(4,9,17,26,27)(6,13,23,34,42)(8,14,16,25,36)(12,21,22,32,33)(20,29,38,47,41)(31,39,48,37,45)(35,43,44,46,50), (1,2,4,8,16,23,33,15)(3,6,12,20,28,17,7,14)(5,10,18,19,27,38,46,25)(9,13,22,31,41,29,39,11)(21,30,40,32,36,44,47,34)(24,35)(26,37,42,49)(43,48,45,50) );
 
Copy content sage:G = PermutationGroup(['(1,3,7,15,24)(2,5,11,19,28)(4,9,17,26,27)(6,13,23,34,42)(8,14,16,25,36)(12,21,22,32,33)(20,29,38,47,41)(31,39,48,37,45)(35,43,44,46,50)', '(1,2,4,8,16,23,33,15)(3,6,12,20,28,17,7,14)(5,10,18,19,27,38,46,25)(9,13,22,31,41,29,39,11)(21,30,40,32,36,44,47,34)(24,35)(26,37,42,49)(43,48,45,50)'])
 
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: not isomorphic to a non-trivial semidirect product
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product

Elements of the group are displayed as equivalence classes (represented by square brackets) of matrices in $\SU(3,5)$.

Homology

Abelianization: $C_1 $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{3}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 179308 subgroups in 80 conjugacy classes, 2 normal, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $\PSU(3,5)$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $\PSU(3,5)$ $G/G' \simeq$ $C_1$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $\PSU(3,5)$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_1$ $G/\operatorname{Fit} \simeq$ $\PSU(3,5)$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $C_1$ $G/R \simeq$ $\PSU(3,5)$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $\PSU(3,5)$ $G/\operatorname{soc} \simeq$ $C_1$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $\SD_{16}$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3^2$
5-Sylow subgroup: $P_{ 5 } \simeq$ $\He_5$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7$

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series $\PSU(3,5)$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $\PSU(3,5)$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $\PSU(3,5)$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 2 larger groups in the database.

This group is a maximal quotient of 1 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

1A 2A 3A 4A 5A 5B 5C 5D 6A 7A1 7A-1 8A1 8A-1 10A
Size 1 525 3500 15750 504 5040 5040 5040 10500 18000 18000 15750 15750 12600
2 P 1A 1A 3A 2A 5A 5B 5C 5D 3A 7A1 7A-1 4A 4A 5A
3 P 1A 2A 1A 4A 5A 5B 5C 5D 2A 7A-1 7A1 8A1 8A-1 10A
5 P 1A 2A 3A 4A 1A 1A 1A 1A 6A 7A-1 7A1 8A-1 8A1 2A
7 P 1A 2A 3A 4A 5A 5B 5C 5D 6A 1A 1A 8A-1 8A1 10A
Type
126000.a.1a R 1 1 1 1 1 1 1 1 1 1 1 1 1 1
126000.a.20a S 20 4 2 0 5 0 0 0 2 1 1 0 0 1
126000.a.21a R 21 5 3 1 4 1 1 1 1 0 0 1 1 0
126000.a.28a R 28 4 1 0 3 2 2 3 1 0 0 0 0 1
126000.a.28b R 28 4 1 0 3 2 3 2 1 0 0 0 0 1
126000.a.28c R 28 4 1 0 3 3 2 2 1 0 0 0 0 1
126000.a.84a R 84 4 3 0 9 1 1 1 1 0 0 0 0 1
126000.a.105a R 105 1 3 1 5 0 0 0 1 0 0 1 1 1
126000.a.125a R 125 5 1 1 0 0 0 0 1 1 1 1 1 0
126000.a.126a R 126 6 0 2 1 1 1 1 0 0 0 0 0 1
126000.a.126b1 C 126 6 0 0 1 1 1 1 0 0 0 ζ8ζ83 ζ8+ζ83 1
126000.a.126b2 C 126 6 0 0 1 1 1 1 0 0 0 ζ8+ζ83 ζ8ζ83 1
126000.a.144a1 C 144 0 0 0 6 1 1 1 0 ζ73ζ7ζ72 ζ73+1+ζ7+ζ72 0 0 0
126000.a.144a2 C 144 0 0 0 6 1 1 1 0 ζ73+1+ζ7+ζ72 ζ73ζ7ζ72 0 0 0

Rational character table

1A 2A 3A 4A 5A 5B 5C 5D 6A 7A 8A 10A
Size 1 525 3500 15750 504 5040 5040 5040 10500 36000 31500 12600
2 P 1A 1A 3A 2A 5A 5B 5C 5D 3A 7A 4A 5A
3 P 1A 2A 1A 4A 5A 5B 5C 5D 2A 7A 8A 10A
5 P 1A 2A 3A 4A 1A 1A 1A 1A 6A 7A 8A 2A
7 P 1A 2A 3A 4A 5A 5B 5C 5D 6A 1A 8A 10A
Schur
126000.a.1a 1 1 1 1 1 1 1 1 1 1 1 1
126000.a.20a 2 20 4 2 0 5 0 0 0 2 1 0 1
126000.a.21a 21 5 3 1 4 1 1 1 1 0 1 0
126000.a.28a 28 4 1 0 3 2 2 3 1 0 0 1
126000.a.28b 28 4 1 0 3 2 3 2 1 0 0 1
126000.a.28c 28 4 1 0 3 3 2 2 1 0 0 1
126000.a.84a 84 4 3 0 9 1 1 1 1 0 0 1
126000.a.105a 105 1 3 1 5 0 0 0 1 0 1 1
126000.a.125a 125 5 1 1 0 0 0 0 1 1 1 0
126000.a.126a 126 6 0 2 1 1 1 1 0 0 0 1
126000.a.126b 252 12 0 0 2 2 2 2 0 0 0 2
126000.a.144a 288 0 0 0 12 2 2 2 0 1 0 0