Properties

Label 126000.a.2520.a1.c1
Order $ 2 \cdot 5^{2} $
Index $ 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 $
Normal No

Downloads

Learn more

Subgroup ($H$) information

Description:$C_5\times D_5$
Order: \(50\)\(\medspace = 2 \cdot 5^{2} \)
Index: \(2520\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 5 \cdot 7 \)
Exponent: \(10\)\(\medspace = 2 \cdot 5 \)
Generators: $\left[ \left(\begin{array}{rrr} 4 & -1 & -1 \\ 2 & 16 & -1 \\ 22 & 18 & 4 \end{array}\right) \right], \left[ \left(\begin{array}{rrr} 12 & 15 & 19 \\ 19 & 15 & 0 \\ 12 & 19 & 14 \end{array}\right) \right], \left[ \left(\begin{array}{rrr} 21 & 23 & 15 \\ 15 & 2 & 7 \\ 15 & 15 & 8 \end{array}\right) \right]$ Copy content Toggle raw display
Derived length: $2$

The subgroup is nonabelian, metacyclic (hence solvable, supersolvable, monomial, and metabelian), and an A-group.

Ambient group ($G$) information

Description: $\PSU(3,5)$
Order: \(126000\)\(\medspace = 2^{4} \cdot 3^{2} \cdot 5^{3} \cdot 7 \)
Exponent: \(840\)\(\medspace = 2^{3} \cdot 3 \cdot 5 \cdot 7 \)
Derived length:$0$

The ambient group is nonabelian and simple (hence nonsolvable, perfect, quasisimple, and almost simple).

Automorphism information

While the subgroup $H$ is not characteristic, the stabilizer $S$ of $H$ in the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : S \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphisms $\operatorname{Inn}(G) \cap S$ is the Weyl group $W = N_G(H) / Z_G(H)$.

$\operatorname{Aut}(G)$$\PGammaU(3,5)$, of order \(756000\)\(\medspace = 2^{5} \cdot 3^{3} \cdot 5^{3} \cdot 7 \)
$\operatorname{Aut}(H)$ $C_4\times F_5$, of order \(80\)\(\medspace = 2^{4} \cdot 5 \)
$W$$F_5$, of order \(20\)\(\medspace = 2^{2} \cdot 5 \)

Related subgroups

Centralizer:$C_5$
Normalizer:$C_5:F_5$
Normal closure:$\PSU(3,5)$
Core:$C_1$
Minimal over-subgroups:$C_5^2:D_5$$C_5:F_5$
Maximal under-subgroups:$C_5^2$$C_{10}$$D_5$
Autjugate subgroups:126000.a.2520.a1.a1126000.a.2520.a1.b1

Other information

Number of subgroups in this conjugacy class$1260$
Möbius function$0$
Projective image$\PSU(3,5)$