Properties

Label 1190.4.2.a1.a1
Order $ 5 \cdot 7 \cdot 17 $
Index $ 2 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{595}$
Order: \(595\)\(\medspace = 5 \cdot 7 \cdot 17 \)
Index: \(2\)
Exponent: \(595\)\(\medspace = 5 \cdot 7 \cdot 17 \)
Generators: $b^{476}, b^{425}, b^{35}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is the Fitting subgroup (hence characteristic, normal, nilpotent, solvable, supersolvable, and monomial), the socle, maximal, a semidirect factor, cyclic (hence abelian, elementary ($p = 5,7,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a Hall subgroup.

Ambient group ($G$) information

Description: $D_5\times C_{119}$
Order: \(1190\)\(\medspace = 2 \cdot 5 \cdot 7 \cdot 17 \)
Exponent: \(1190\)\(\medspace = 2 \cdot 5 \cdot 7 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_2$
Order: \(2\)
Exponent: \(2\)
Automorphism Group: $C_1$, of order $1$
Outer Automorphisms: $C_1$, of order $1$
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary, hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), a $p$-group, simple, and rational.

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_{48}\times F_5$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
$\operatorname{Aut}(H)$ $C_2\times C_4\times C_{48}$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_2\times C_4\times C_{48}$, of order \(384\)\(\medspace = 2^{7} \cdot 3 \)
$\card{\operatorname{ker}(\operatorname{res})}$\(5\)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{595}$
Normalizer:$D_5\times C_{119}$
Complements:$C_2$
Minimal over-subgroups:$D_5\times C_{119}$
Maximal under-subgroups:$C_{119}$$C_{85}$$C_{35}$

Other information

Möbius function$-1$
Projective image$D_5$