Properties

Label 1920.38210
Order \( 2^{7} \cdot 3 \cdot 5 \)
Exponent \( 2^{4} \cdot 3 \cdot 5 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2^{7} \cdot 3 \)
$\card{Z(G)}$ \( 2^{5} \cdot 3 \)
$\card{\Aut(G)}$ \( 2^{11} \cdot 5 \)
$\card{\mathrm{Out}(G)}$ \( 2^{9} \)
Trans deg. not computed
Rank not computed

Learn more

This group is not stored in the database. However, basic information about the group, computed on the fly, is listed below.

Group information

Description:$C_3 \times (C_5 \rtimes (C_2\times C_4\times C_{16}))$
Order: \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
Exponent: \(240\)\(\medspace = 2^{4} \cdot 3 \cdot 5 \)
Automorphism group:Group of order 10240
Derived length:$2$

This group is nonabelian, supersolvable (hence solvable and monomial), hyperelementary for $p = 2$, metabelian, and an A-group. Whether it is metacyclic, monomial, or rational has not been computed.

Group statistics

Order 1 2 3 4 5 6 8 10 12 15 16 20 24 30 40 48 60 80 120 240
Elements 1 23 2 104 4 46 128 12 208 8 256 16 256 24 32 512 32 64 64 128 1920
Conjugacy classes   1 7 2 24 1 14 32 3 48 2 64 4 64 6 8 128 8 16 16 32 480
Divisions data not computed
Autjugacy classes data not computed

Dimension 1 4
Irr. complex chars.   384 96 480

Constructions

Presentation: ${\langle a, b, c, d, e, f, g, h, i \mid c^{2}=e^{2}=g^{2}=h^{3}=i^{5}=[a,b]= \!\cdots\! \rangle}$ Copy content Toggle raw display
Aut. group: $\Aut(D_5\times C_{119})$ $\Aut(D_5\times C_{153})$

Homology

Abelianization: $C_{2} \times C_{4} \times C_{48} \simeq C_{2} \times C_{4} \times C_{16} \times C_{3}$

Subgroups

Center: $Z \simeq$ $C_2\times C_{48}$ $G/Z \simeq$ $F_5$
Commutator: $G' \simeq$ $C_5$ $G/G' \simeq$ $C_2\times C_4\times C_{48}$
Frattini: $\Phi \simeq$ $C_8$ $G/\Phi \simeq$ $D_{10}:C_{12}$
Fitting: $\operatorname{Fit} \simeq$ $C_2\times C_{240}$ $G/\operatorname{Fit} \simeq$ $C_4$
Radical: $R \simeq$ $C_3 \times (C_5 \rtimes (C_2\times C_4\times C_{16}))$ $G/R \simeq$ $C_1$
Socle: $S \simeq$ $C_2\times C_{30}$ $G/S \simeq$ $C_4\times C_8$
2-Sylow subgroup: $P_{2} \simeq$ $C_2\times C_4\times C_{16}$
3-Sylow subgroup: $P_{3} \simeq$ $C_3$
5-Sylow subgroup: $P_{5} \simeq$ $C_5$
Maximal subgroups: $M_{2,1} \simeq$ $D_{10}\times C_{48}$ $G/M_{2,1} \simeq$ $C_2$
$M_{2,2} \simeq$ $D_{10}:C_{48}$ $G/M_{2,2} \simeq$ $C_2$
$M_{2,3} \simeq$ $C_{60}.C_4^2$ $G/M_{2,3} \simeq$ $C_2$
$M_{2,4} \simeq$ $F_5\times C_{48}$ $G/M_{2,4} \simeq$ $C_2$ 4 normal subgroups
$M_{3} \simeq$ $C_5 \rtimes (C_2\times C_4\times C_{16})$ $G/M_{3} \simeq$ $C_3$
$M_{5} \simeq$ $C_2\times C_4\times C_{48}$ 5 subgroups in one conjugacy class
Maximal quotients: $m_{2,1} \simeq$ $C_2$ $G/m_{2,1} \simeq$ $C_{60}.C_4^2$
$m_{2,2} \simeq$ $C_2$ $G/m_{2,2} \simeq$ $F_5\times C_{48}$ 2 normal subgroups
$m_{3} \simeq$ $C_3$ $G/m_{3} \simeq$ $C_5 \rtimes (C_2\times C_4\times C_{16})$
$m_{5} \simeq$ $C_5$ $G/m_{5} \simeq$ $C_2\times C_4\times C_{48}$