Properties

Label 1190.4.14.a1.a1
Order $ 5 \cdot 17 $
Index $ 2 \cdot 7 $
Normal Yes

Downloads

Learn more

Subgroup ($H$) information

Description:$C_{85}$
Order: \(85\)\(\medspace = 5 \cdot 17 \)
Index: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(85\)\(\medspace = 5 \cdot 17 \)
Generators: $b^{476}, b^{35}$ Copy content Toggle raw display
Nilpotency class: $1$
Derived length: $1$

The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 5,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a Hall subgroup.

Ambient group ($G$) information

Description: $D_5\times C_{119}$
Order: \(1190\)\(\medspace = 2 \cdot 5 \cdot 7 \cdot 17 \)
Exponent: \(1190\)\(\medspace = 2 \cdot 5 \cdot 7 \cdot 17 \)
Derived length:$2$

The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Quotient group ($Q$) structure

Description: $C_{14}$
Order: \(14\)\(\medspace = 2 \cdot 7 \)
Exponent: \(14\)\(\medspace = 2 \cdot 7 \)
Automorphism Group: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Outer Automorphisms: $C_6$, of order \(6\)\(\medspace = 2 \cdot 3 \)
Nilpotency class: $1$
Derived length: $1$

The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).

Automorphism information

Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.

$\operatorname{Aut}(G)$$C_2\times C_{48}\times F_5$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \)
$\operatorname{Aut}(H)$ $C_4\times C_{16}$, of order \(64\)\(\medspace = 2^{6} \)
$\operatorname{res}(\operatorname{Aut}(G))$$C_4\times C_{16}$, of order \(64\)\(\medspace = 2^{6} \)
$\card{\operatorname{ker}(\operatorname{res})}$\(30\)\(\medspace = 2 \cdot 3 \cdot 5 \)
$W$$C_2$, of order \(2\)

Related subgroups

Centralizer:$C_{595}$
Normalizer:$D_5\times C_{119}$
Complements:$C_{14}$
Minimal over-subgroups:$C_{595}$$D_5\times C_{17}$
Maximal under-subgroups:$C_{17}$$C_5$

Other information

Möbius function$1$
Projective image$C_7\times D_5$