Subgroup ($H$) information
Description: | $C_{35}$ |
Order: | \(35\)\(\medspace = 5 \cdot 7 \) |
Index: | \(34\)\(\medspace = 2 \cdot 17 \) |
Exponent: | \(35\)\(\medspace = 5 \cdot 7 \) |
Generators: |
$b^{476}, b^{425}$
|
Nilpotency class: | $1$ |
Derived length: | $1$ |
The subgroup is characteristic (hence normal), a semidirect factor, cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 5,7$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group), and a Hall subgroup.
Ambient group ($G$) information
Description: | $D_5\times C_{119}$ |
Order: | \(1190\)\(\medspace = 2 \cdot 5 \cdot 7 \cdot 17 \) |
Exponent: | \(1190\)\(\medspace = 2 \cdot 5 \cdot 7 \cdot 17 \) |
Derived length: | $2$ |
The ambient group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.
Quotient group ($Q$) structure
Description: | $C_{34}$ |
Order: | \(34\)\(\medspace = 2 \cdot 17 \) |
Exponent: | \(34\)\(\medspace = 2 \cdot 17 \) |
Automorphism Group: | $C_{16}$, of order \(16\)\(\medspace = 2^{4} \) |
Outer Automorphisms: | $C_{16}$, of order \(16\)\(\medspace = 2^{4} \) |
Nilpotency class: | $1$ |
Derived length: | $1$ |
The quotient is cyclic (hence abelian, nilpotent, solvable, supersolvable, monomial, elementary ($p = 2,17$), hyperelementary, metacyclic, metabelian, a Z-group, and an A-group).
Automorphism information
Since the subgroup $H$ is characteristic, the automorphism group $\operatorname{Aut}(G)$ of the ambient group acts on $H$, yielding a homomorphism $\operatorname{res} : \operatorname{Aut}(G) \to \operatorname{Aut}(H)$. The image of $\operatorname{res}$ on the inner automorphism group $\operatorname{Inn}(G)$ is the Weyl group $W = G / Z_G(H)$.
$\operatorname{Aut}(G)$ | $C_2\times C_{48}\times F_5$, of order \(1920\)\(\medspace = 2^{7} \cdot 3 \cdot 5 \) |
$\operatorname{Aut}(H)$ | $C_2\times C_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
$\operatorname{res}(\operatorname{Aut}(G))$ | $C_2\times C_{12}$, of order \(24\)\(\medspace = 2^{3} \cdot 3 \) |
$\card{\operatorname{ker}(\operatorname{res})}$ | \(80\)\(\medspace = 2^{4} \cdot 5 \) |
$W$ | $C_2$, of order \(2\) |
Related subgroups
Centralizer: | $C_{595}$ | |
Normalizer: | $D_5\times C_{119}$ | |
Complements: | $C_{34}$ | |
Minimal over-subgroups: | $C_{595}$ | $C_7\times D_5$ |
Maximal under-subgroups: | $C_7$ | $C_5$ |
Other information
Möbius function | $1$ |
Projective image | $D_5\times C_{17}$ |