L-function data
| Analytic rank: | \(2\) (upper bound) | |||||||||||||||||||||||||||||||||
| Mordell-Weil rank: | \(2\) | |||||||||||||||||||||||||||||||||
| Bad L-factors: | 
 | |||||||||||||||||||||||||||||||||
| Good L-factors: | 
 | |||||||||||||||||||||||||||||||||
| See L-function page for more information | ||||||||||||||||||||||||||||||||||
Sato-Tate group
\(\mathrm{ST} =\) $E_6$, \(\quad \mathrm{ST}^0 = \mathrm{SU}(2)\)
Decomposition of the Jacobian
Splits over the number field \(\Q (b) \simeq \) 6.6.8587340257.1 with defining polynomial:
  \(x^{6} - x^{5} - 40 x^{4} - 45 x^{3} + 236 x^{2} + 230 x - 389\)
Decomposes up to isogeny as the square of the elliptic curve isogeny class:
  \(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
  \(g_4 = -\frac{780253}{376} b^{5} - \frac{3367987}{1504} b^{4} + \frac{117849811}{1504} b^{3} + \frac{385459869}{1504} b^{2} + \frac{16108321}{376} b - \frac{584419305}{1504}\)
  \(g_6 = \frac{14792680517}{6016} b^{5} + \frac{15949868983}{6016} b^{4} - \frac{558559142863}{6016} b^{3} - \frac{913242130137}{3008} b^{2} - \frac{304797991689}{6016} b + \frac{173053323651}{376}\)
   Conductor norm: 64
Endomorphisms of the Jacobian
Of \(\GL_2\)-type over \(\Q\)
Endomorphism algebra over \(\Q\):
| \(\End (J_{}) \otimes \Q \) | \(\simeq\) | \(\Q(\sqrt{-3}) \) | 
| \(\End (J_{}) \otimes \R\) | \(\simeq\) | \(\C\) | 
Smallest field over which all endomorphisms are defined:
        Galois number field \(K = \Q (a) \simeq \) 6.6.8587340257.1 with defining polynomial \(x^{6} - x^{5} - 40 x^{4} - 45 x^{3} + 236 x^{2} + 230 x - 389\)
Endomorphism algebra over \(\overline{\Q}\):
| \(\End (J_{\overline{\Q}}) \otimes \Q \) | \(\simeq\) | \(\mathrm{M}_2(\)\(\Q\)\()\) | 
| \(\End (J_{\overline{\Q}}) \otimes \R\) | \(\simeq\) | \(\mathrm{M}_2 (\R)\) | 
More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.
Genus 2 curves in isogeny class 37636.a
| Label | Equation | 
|---|---|
| 37636.a.602176.1 | \(y^2 + (x^3 + x + 1)y = x^5 + 4x^4 + 6x^3 + 3x^2\) | 
