Properties

Label 147456.c
Conductor $147456$
Sato-Tate group $J(E_4)$
\(\End(J_{\overline{\Q}}) \otimes \R\) \(\mathrm{M}_2(\R)\)
\(\End(J_{\overline{\Q}}) \otimes \Q\) \(\mathrm{M}_2(\Q)\)
\(\End(J) \otimes \Q\) \(\Q\)
\(\overline{\Q}\)-simple no
\(\mathrm{GL}_2\)-type no

Related objects

Learn more

L-function data

Analytic rank:\(0\)
Mordell-Weil rank:\(0\)
 
Bad L-factors:
Prime L-Factor
\(2\)\( 1\)
\(3\)\( 1 + 3 T^{2}\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( ( 1 - 5 T^{2} )^{2}\) 2.5.a_ak
\(7\) \( 1 + 6 T^{2} + 49 T^{4}\) 2.7.a_g
\(11\) \( 1 - 10 T^{2} + 121 T^{4}\) 2.11.a_ak
\(13\) \( ( 1 - 4 T + 13 T^{2} )( 1 + 6 T + 13 T^{2} )\) 2.13.c_c
\(17\) \( 1 - 2 T + 2 T^{2} - 34 T^{3} + 289 T^{4}\) 2.17.ac_c
\(19\) \( ( 1 - 4 T + 19 T^{2} )( 1 + 4 T + 19 T^{2} )\) 2.19.a_w
\(23\) \( ( 1 - 4 T + 23 T^{2} )( 1 + 4 T + 23 T^{2} )\) 2.23.a_be
\(29\) \( ( 1 + 2 T + 29 T^{2} )^{2}\) 2.29.e_ck
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Sato-Tate group

\(\mathrm{ST} =\) $J(E_4)$, \(\quad \mathrm{ST}^0 = \mathrm{SU}(2)\)

Decomposition of the Jacobian

Splits over the number field \(\Q (b) \simeq \) 4.2.55296.4 with defining polynomial:
  \(x^{4} - 24\)

Decomposes up to isogeny as the product of the non-isogenous elliptic curve isogeny classes:
  \(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
  \(g_4 = 240 b^{2} - 720\)
  \(g_6 = 4320 b^{3} - 16128 b\)
   Conductor norm: 32
  \(y^2 = x^3 - g_4 / 48 x - g_6 / 864\) with
  \(g_4 = 240 b^{2} - 720\)
  \(g_6 = -4320 b^{3} + 16128 b\)
   Conductor norm: 32

Endomorphisms of the Jacobian

Not of \(\GL_2\)-type over \(\Q\)

Endomorphism algebra over \(\Q\):

\(\End (J_{}) \otimes \Q \)\(\simeq\)\(\Q\)
\(\End (J_{}) \otimes \R\)\(\simeq\) \(\R\)

Smallest field over which all endomorphisms are defined:
Galois number field \(K = \Q (a) \simeq \) 8.0.12230590464.5 with defining polynomial \(x^{8} + 4 x^{6} + 18 x^{4} - 68 x^{2} + 49\)

Endomorphism algebra over \(\overline{\Q}\):

\(\End (J_{\overline{\Q}}) \otimes \Q \)\(\simeq\)\(\mathrm{M}_2(\)\(\Q\)\()\)
\(\End (J_{\overline{\Q}}) \otimes \R\)\(\simeq\) \(\mathrm{M}_2 (\R)\)

More complete information on endomorphism algebras and rings can be found on the pages of the individual curves in the isogeny class.

Genus 2 curves in isogeny class 147456.c

Label Equation
147456.c.884736.1 \(y^2 = 2x^5 + 5x^3 + 3x\)