| Label |
Name |
Order |
Parity |
Solvable |
Nil. class |
Conj. classes |
Subfields |
Low Degree Siblings |
| 20T203 |
$S_4\times A_5$ |
$1440$ |
$-1$ |
|
$-1$ |
$25$ |
$S_4$, $A_5$ |
24T2963, 30T258, 30T262, 36T2333, 36T2334, 36T2335, 36T2336, 40T1200, 40T1206 |
| 24T2963 |
$S_4\times A_5$ |
$1440$ |
$1$ |
|
$-1$ |
$25$ |
$S_4$, $\PSL(2,5)$ |
20T203, 30T258, 30T262, 36T2333, 36T2334, 36T2335, 36T2336, 40T1200, 40T1206 |
| 30T258 |
$S_4\times A_5$ |
$1440$ |
$-1$ |
|
$-1$ |
$25$ |
$S_3$, $A_5$, $S_4$, $A_5 \times S_3$ |
20T203, 24T2963, 30T262, 36T2333, 36T2334, 36T2335, 36T2336, 40T1200, 40T1206 |
| 30T262 |
$S_4\times A_5$ |
$1440$ |
$1$ |
|
$-1$ |
$25$ |
$S_3$, $A_5$, $S_4$, $A_5 \times S_3$ |
20T203, 24T2963, 30T258, 36T2333, 36T2334, 36T2335, 36T2336, 40T1200, 40T1206 |
| 36T2333 |
$S_4\times A_5$ |
$1440$ |
$1$ |
|
$-1$ |
$25$ |
$S_3$, $S_4$, $\PSL(2,5)$, $S_3\times A_5$ |
20T203, 24T2963, 30T258, 30T262, 36T2334, 36T2335, 36T2336, 40T1200, 40T1206 |
| 36T2334 |
$S_4\times A_5$ |
$1440$ |
$1$ |
|
$-1$ |
$25$ |
$S_3$, $S_4$, $\PSL(2,5)$, $S_3\times A_5$ |
20T203, 24T2963, 30T258, 30T262, 36T2333, 36T2335, 36T2336, 40T1200, 40T1206 |
| 36T2335 |
$S_4\times A_5$ |
$1440$ |
$1$ |
|
$-1$ |
$25$ |
$S_3$, $\PSL(2,5)$, $S_3\times A_5$ |
20T203, 24T2963, 30T258, 30T262, 36T2333, 36T2334, 36T2336, 40T1200, 40T1206 |
| 36T2336 |
$S_4\times A_5$ |
$1440$ |
$1$ |
|
$-1$ |
$25$ |
$S_3$, $\PSL(2,5)$, $S_3\times A_5$ |
20T203, 24T2963, 30T258, 30T262, 36T2333, 36T2334, 36T2335, 40T1200, 40T1206 |
| 40T1200 |
$S_4\times A_5$ |
$1440$ |
$1$ |
|
$-1$ |
$25$ |
$C_2$, $S_4$, $A_5$, $S_4$, $A_5\times C_2$, $S_4\times A_5$ |
20T203, 24T2963, 30T258, 30T262, 36T2333, 36T2334, 36T2335, 36T2336, 40T1206 |
| 40T1206 |
$S_4\times A_5$ |
$1440$ |
$1$ |
|
$-1$ |
$25$ |
$S_4$, $A_{5}$ |
20T203, 24T2963, 30T258, 30T262, 36T2333, 36T2334, 36T2335, 36T2336, 40T1200 |
Results are complete for degrees $\leq 23$.