Show commands: Magma
Group invariants
| Abstract group: | $S_4\times A_5$ |
| |
| Order: | $1440=2^{5} \cdot 3^{2} \cdot 5$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | no |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $2336$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,6,2,5)(3,4)(7,23,13,35,25,11,20,17,32,29,8,24,14,36,26,12,19,18,31,30)(9,22,16,33,27,10,21,15,34,28)$, $(1,20,7,32,13)(2,19,8,31,14)(3,23,9,35,15,5,22,12,34,18)(4,24,10,36,16,6,21,11,33,17)(27,30)(28,29)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $6$: $S_3$ $24$: $S_4$ $60$: $A_5$ $120$: $A_5\times C_2$ $360$: $A_5 \times S_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: None
Degree 6: $\PSL(2,5)$
Degree 9: None
Degree 12: None
Degree 18: 18T145
Low degree siblings
20T203, 24T2963, 30T258, 30T262, 36T2333, 36T2334, 36T2335, 40T1200, 40T1206Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{12},1^{12}$ | $3$ | $2$ | $12$ | $( 1, 2)( 5, 6)( 7, 8)(11,12)(13,14)(17,18)(19,20)(23,24)(25,26)(29,30)(31,32)(35,36)$ |
| 2B | $2^{12},1^{12}$ | $6$ | $2$ | $12$ | $( 1, 3)( 2, 4)( 7, 9)( 8,10)(13,15)(14,16)(19,21)(20,22)(25,27)(26,28)(31,33)(32,34)$ |
| 2C | $2^{18}$ | $15$ | $2$ | $18$ | $( 1, 8)( 2, 7)( 3,10)( 4, 9)( 5,11)( 6,12)(13,31)(14,32)(15,33)(16,34)(17,35)(18,36)(19,20)(21,22)(23,24)(25,26)(27,28)(29,30)$ |
| 2D | $2^{14},1^{8}$ | $45$ | $2$ | $14$ | $( 1,25)( 2,26)( 3,28)( 4,27)( 5,29)( 6,30)( 7,32)( 8,31)( 9,33)(10,34)(11,35)(12,36)(13,14)(19,20)$ |
| 2E | $2^{18}$ | $90$ | $2$ | $18$ | $( 1, 2)( 3, 5)( 4, 6)( 7,26)( 8,25)( 9,30)(10,29)(11,28)(12,27)(13,14)(15,18)(16,17)(19,31)(20,32)(21,35)(22,36)(23,33)(24,34)$ |
| 3A | $3^{12}$ | $8$ | $3$ | $24$ | $( 1, 5, 3)( 2, 6, 4)( 7,12, 9)( 8,11,10)(13,18,15)(14,17,16)(19,24,21)(20,23,22)(25,30,27)(26,29,28)(31,36,33)(32,35,34)$ |
| 3B | $3^{12}$ | $20$ | $3$ | $24$ | $( 1,31, 8)( 2,32, 7)( 3,33,10)( 4,34, 9)( 5,36,11)( 6,35,12)(13,20,25)(14,19,26)(15,22,27)(16,21,28)(17,24,29)(18,23,30)$ |
| 3C | $3^{12}$ | $160$ | $3$ | $24$ | $( 1,15,35)( 2,16,36)( 3,18,31)( 4,17,32)( 5,14,33)( 6,13,34)( 7,27,23)( 8,28,24)( 9,30,19)(10,29,20)(11,25,22)(12,26,21)$ |
| 4A | $4^{6},2^{6}$ | $6$ | $4$ | $24$ | $( 1, 5, 2, 6)( 3, 4)( 7,12, 8,11)( 9,10)(13,18,14,17)(15,16)(19,24,20,23)(21,22)(25,30,26,29)(27,28)(31,36,32,35)(33,34)$ |
| 4B | $4^{6},2^{4},1^{4}$ | $90$ | $4$ | $22$ | $( 1,29, 2,30)( 3,27)( 4,28)( 5,25, 6,26)( 7,11, 8,12)(13,23,14,24)(15,21)(16,22)(17,20,18,19)(31,35,32,36)$ |
| 5A1 | $5^{6},1^{6}$ | $12$ | $5$ | $24$ | $( 1,31,14, 7,26)( 2,32,13, 8,25)( 3,33,16, 9,28)( 4,34,15,10,27)( 5,36,17,12,29)( 6,35,18,11,30)$ |
| 5A2 | $5^{6},1^{6}$ | $12$ | $5$ | $24$ | $( 1,14,26,31, 7)( 2,13,25,32, 8)( 3,16,28,33, 9)( 4,15,27,34,10)( 5,17,29,36,12)( 6,18,30,35,11)$ |
| 6A | $6^{4},3^{4}$ | $60$ | $6$ | $28$ | $( 1, 7,31, 2, 8,32)( 3,10,33)( 4, 9,34)( 5,12,36, 6,11,35)(13,26,20,14,25,19)(15,27,22)(16,28,21)(17,30,24,18,29,23)$ |
| 6B | $6^{4},3^{4}$ | $120$ | $6$ | $28$ | $( 1,28,13, 3,26,15)( 2,27,14, 4,25,16)( 5,29,18)( 6,30,17)( 7,21,31, 9,19,33)( 8,22,32,10,20,34)(11,23,35)(12,24,36)$ |
| 6C | $6^{6}$ | $120$ | $6$ | $30$ | $( 1,11, 3, 8, 5,10)( 2,12, 4, 7, 6, 9)(13,36,15,31,18,33)(14,35,16,32,17,34)(19,23,21,20,24,22)(25,29,27,26,30,28)$ |
| 10A1 | $10^{2},5^{2},2^{2},1^{2}$ | $36$ | $10$ | $28$ | $( 1, 2)( 3, 4)( 7,13,25,20,32, 8,14,26,19,31)( 9,15,27,22,34,10,16,28,21,33)(11,18,29,23,36)(12,17,30,24,35)$ |
| 10A3 | $10^{2},5^{2},2^{2},1^{2}$ | $36$ | $10$ | $28$ | $( 1, 2)( 3, 4)( 7,20,14,31,25, 8,19,13,32,26)( 9,22,16,33,27,10,21,15,34,28)(11,23,18,36,29)(12,24,17,35,30)$ |
| 10B1 | $10^{2},5^{2},2^{2},1^{2}$ | $72$ | $10$ | $28$ | $( 1,32, 8,26,19)( 2,31, 7,25,20)( 3,35,10,29,21, 5,34,11,28,24)( 4,36, 9,30,22, 6,33,12,27,23)(15,18)(16,17)$ |
| 10B3 | $10^{2},5^{2},2^{2},1^{2}$ | $72$ | $10$ | $28$ | $( 1,26,32,19, 8)( 2,25,31,20, 7)( 3,29,34,24,10, 5,28,35,21,11)( 4,30,33,23, 9, 6,27,36,22,12)(15,18)(16,17)$ |
| 12A | $12^{2},6^{2}$ | $120$ | $12$ | $32$ | $( 1,35, 7, 5,31,12, 2,36, 8, 6,32,11)( 3,34,10, 4,33, 9)(13,24,26,18,20,29,14,23,25,17,19,30)(15,21,27,16,22,28)$ |
| 15A1 | $15^{2},3^{2}$ | $96$ | $15$ | $32$ | $( 1,16,29,31, 9, 5,14,28,36, 7, 3,17,26,33,12)( 2,15,30,32,10, 6,13,27,35, 8, 4,18,25,34,11)(19,21,24)(20,22,23)$ |
| 15A2 | $15^{2},3^{2}$ | $96$ | $15$ | $32$ | $( 1,29, 9,14,36, 3,26,12,16,31, 5,28, 7,17,33)( 2,30,10,13,35, 4,25,11,15,32, 6,27, 8,18,34)(19,24,21)(20,23,22)$ |
| 20A1 | $20,10,4,2$ | $72$ | $20$ | $32$ | $( 1, 4, 2, 3)( 5, 6)( 7,22,13,34,25,10,20,16,32,28, 8,21,14,33,26, 9,19,15,31,27)(11,24,18,35,29,12,23,17,36,30)$ |
| 20A3 | $20,10,4,2$ | $72$ | $20$ | $32$ | $( 1, 3, 2, 4)( 5, 6)( 7,34,20,28,14, 9,31,22,25,16, 8,33,19,27,13,10,32,21,26,15)(11,35,23,30,18,12,36,24,29,17)$ |
Malle's constant $a(G)$: $1/12$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 3C | 4A | 4B | 5A1 | 5A2 | 6A | 6B | 6C | 10A1 | 10A3 | 10B1 | 10B3 | 12A | 15A1 | 15A2 | 20A1 | 20A3 | ||
| Size | 1 | 3 | 6 | 15 | 45 | 90 | 8 | 20 | 160 | 6 | 90 | 12 | 12 | 60 | 120 | 120 | 36 | 36 | 72 | 72 | 120 | 96 | 96 | 72 | 72 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 3A | 3B | 3C | 2A | 2A | 5A2 | 5A1 | 3B | 3B | 3A | 5A2 | 5A1 | 5A1 | 5A2 | 6A | 15A2 | 15A1 | 10A1 | 10A3 | |
| 3 P | 1A | 2A | 2B | 2C | 2D | 2E | 1A | 1A | 1A | 4A | 4B | 5A2 | 5A1 | 2A | 2B | 2C | 10A3 | 10A1 | 10B3 | 10B1 | 4A | 5A1 | 5A2 | 20A3 | 20A1 | |
| 5 P | 1A | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 3C | 4A | 4B | 1A | 1A | 6A | 6B | 6C | 2A | 2A | 2B | 2B | 12A | 3A | 3A | 4A | 4A | |
| Type | ||||||||||||||||||||||||||
| 1440.5848.1a | R | |||||||||||||||||||||||||
| 1440.5848.1b | R | |||||||||||||||||||||||||
| 1440.5848.2a | R | |||||||||||||||||||||||||
| 1440.5848.3a | R | |||||||||||||||||||||||||
| 1440.5848.3b | R | |||||||||||||||||||||||||
| 1440.5848.3c1 | R | |||||||||||||||||||||||||
| 1440.5848.3c2 | R | |||||||||||||||||||||||||
| 1440.5848.3d1 | R | |||||||||||||||||||||||||
| 1440.5848.3d2 | R | |||||||||||||||||||||||||
| 1440.5848.4a | R | |||||||||||||||||||||||||
| 1440.5848.4b | R | |||||||||||||||||||||||||
| 1440.5848.5a | R | |||||||||||||||||||||||||
| 1440.5848.5b | R | |||||||||||||||||||||||||
| 1440.5848.6a1 | R | |||||||||||||||||||||||||
| 1440.5848.6a2 | R | |||||||||||||||||||||||||
| 1440.5848.8a | R | |||||||||||||||||||||||||
| 1440.5848.9a1 | R | |||||||||||||||||||||||||
| 1440.5848.9a2 | R | |||||||||||||||||||||||||
| 1440.5848.9b1 | R | |||||||||||||||||||||||||
| 1440.5848.9b2 | R | |||||||||||||||||||||||||
| 1440.5848.10a | R | |||||||||||||||||||||||||
| 1440.5848.12a | R | |||||||||||||||||||||||||
| 1440.5848.12b | R | |||||||||||||||||||||||||
| 1440.5848.15a | R | |||||||||||||||||||||||||
| 1440.5848.15b | R |
Regular extensions
Data not computed