Show commands: Magma
Group invariants
| Abstract group: | $S_4\times A_5$ |
| |
| Order: | $1440=2^{5} \cdot 3^{2} \cdot 5$ |
| |
| Cyclic: | no |
| |
| Abelian: | no |
| |
| Solvable: | no |
| |
| Nilpotency class: | not nilpotent |
|
Group action invariants
| Degree $n$: | $36$ |
| |
| Transitive number $t$: | $2333$ |
| |
| Parity: | $1$ |
| |
| Primitive: | no |
| |
| $\card{\Aut(F/K)}$: | $2$ |
| |
| Generators: | $(1,8,25,14,19)(2,7,26,13,20)(3,11,27,17,21,5,10,30,16,24)(4,12,28,18,22,6,9,29,15,23)(33,36)(34,35)$, $(1,27,2,28)(3,26,4,25)(5,29)(6,30)(7,34,8,33)(9,31,10,32)(11,35)(12,36)(13,15,14,16)(17,18)(19,21,20,22)(23,24)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $6$: $S_3$ $24$: $S_4$ $60$: $A_5$ $120$: $A_5\times C_2$ $360$: $A_5 \times S_3$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: None
Degree 3: $S_3$
Degree 4: None
Degree 6: $S_4$, $\PSL(2,5)$
Degree 9: None
Degree 12: None
Degree 18: 18T145
Low degree siblings
20T203, 24T2963, 30T258, 30T262, 36T2334, 36T2335, 36T2336, 40T1200, 40T1206Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
| Label | Cycle Type | Size | Order | Index | Representative |
| 1A | $1^{36}$ | $1$ | $1$ | $0$ | $()$ |
| 2A | $2^{12},1^{12}$ | $3$ | $2$ | $12$ | $( 1, 2)( 3, 4)( 7, 8)( 9,10)(13,14)(15,16)(19,20)(21,22)(25,26)(27,28)(31,32)(33,34)$ |
| 2B | $2^{12},1^{12}$ | $6$ | $2$ | $12$ | $( 1, 6)( 2, 5)( 7,11)( 8,12)(13,17)(14,18)(19,23)(20,24)(25,29)(26,30)(31,35)(32,36)$ |
| 2C | $2^{12},1^{12}$ | $15$ | $2$ | $12$ | $( 7,13)( 8,14)( 9,15)(10,16)(11,17)(12,18)(25,31)(26,32)(27,33)(28,34)(29,35)(30,36)$ |
| 2D | $2^{16},1^{4}$ | $45$ | $2$ | $16$ | $( 3, 4)( 5, 6)( 7,20)( 8,19)( 9,21)(10,22)(11,23)(12,24)(13,26)(14,25)(15,27)(16,28)(17,29)(18,30)(33,34)(35,36)$ |
| 2E | $2^{16},1^{4}$ | $90$ | $2$ | $16$ | $( 1,25)( 2,26)( 3,29)( 4,30)( 5,28)( 6,27)( 9,11)(10,12)(13,20)(14,19)(15,24)(16,23)(17,22)(18,21)(33,35)(34,36)$ |
| 3A | $3^{12}$ | $8$ | $3$ | $24$ | $( 1, 4, 6)( 2, 3, 5)( 7,10,11)( 8, 9,12)(13,16,17)(14,15,18)(19,22,23)(20,21,24)(25,28,29)(26,27,30)(31,34,35)(32,33,36)$ |
| 3B | $3^{12}$ | $20$ | $3$ | $24$ | $( 1,19,31)( 2,20,32)( 3,21,33)( 4,22,34)( 5,24,36)( 6,23,35)( 7,26,13)( 8,25,14)( 9,28,15)(10,27,16)(11,30,17)(12,29,18)$ |
| 3C | $3^{12}$ | $160$ | $3$ | $24$ | $( 1,17,22)( 2,18,21)( 3,13,23)( 4,14,24)( 5,15,19)( 6,16,20)( 7,35,27)( 8,36,28)( 9,31,30)(10,32,29)(11,34,25)(12,33,26)$ |
| 4A | $4^{6},2^{6}$ | $6$ | $4$ | $24$ | $( 1, 4, 2, 3)( 5, 6)( 7,10, 8, 9)(11,12)(13,16,14,15)(17,18)(19,22,20,21)(23,24)(25,28,26,27)(29,30)(31,34,32,33)(35,36)$ |
| 4B | $4^{6},2^{6}$ | $90$ | $4$ | $24$ | $( 1,34, 2,33)( 3,31, 4,32)( 5,35)( 6,36)( 7,21, 8,22)( 9,20,10,19)(11,23)(12,24)(13,16,14,15)(17,18)(25,28,26,27)(29,30)$ |
| 5A1 | $5^{6},1^{6}$ | $12$ | $5$ | $24$ | $( 7,26,32,13,20)( 8,25,31,14,19)( 9,28,34,15,22)(10,27,33,16,21)(11,30,36,17,24)(12,29,35,18,23)$ |
| 5A2 | $5^{6},1^{6}$ | $12$ | $5$ | $24$ | $( 7,32,20,26,13)( 8,31,19,25,14)( 9,34,22,28,15)(10,33,21,27,16)(11,36,24,30,17)(12,35,23,29,18)$ |
| 6A | $6^{4},3^{4}$ | $60$ | $6$ | $28$ | $( 1,32,19, 2,31,20)( 3,34,21, 4,33,22)( 5,36,24)( 6,35,23)( 7,14,26, 8,13,25)( 9,16,28,10,15,27)(11,17,30)(12,18,29)$ |
| 6B | $6^{4},3^{4}$ | $120$ | $6$ | $28$ | $( 1,29,14, 6,25,18)( 2,30,13, 5,26,17)( 3,27,16)( 4,28,15)( 7,24,32,11,20,36)( 8,23,31,12,19,35)( 9,22,34)(10,21,33)$ |
| 6C | $6^{4},3^{4}$ | $120$ | $6$ | $28$ | $( 1, 4, 6)( 2, 3, 5)( 7,16,11,13,10,17)( 8,15,12,14, 9,18)(19,22,23)(20,21,24)(25,34,29,31,28,35)(26,33,30,32,27,36)$ |
| 10A1 | $10^{2},5^{2},2^{2},1^{2}$ | $36$ | $10$ | $28$ | $( 1,26,14,32,19, 2,25,13,31,20)( 3,27,16,33,21)( 4,28,15,34,22)( 5,29,17,35,24, 6,30,18,36,23)( 7, 8)(11,12)$ |
| 10A3 | $10^{2},5^{2},2^{2},1^{2}$ | $36$ | $10$ | $28$ | $( 1,32,25,20,14, 2,31,26,19,13)( 3,33,27,21,16)( 4,34,28,22,15)( 5,35,30,23,17, 6,36,29,24,18)( 7, 8)(11,12)$ |
| 10B1 | $10^{2},5^{2},2^{2},1^{2}$ | $72$ | $10$ | $28$ | $( 1, 8,25,14,19)( 2, 7,26,13,20)( 3,11,27,17,21, 5,10,30,16,24)( 4,12,28,18,22, 6, 9,29,15,23)(33,36)(34,35)$ |
| 10B3 | $10^{2},5^{2},2^{2},1^{2}$ | $72$ | $10$ | $28$ | $( 1,14, 8,19,25)( 2,13, 7,20,26)( 3,17,10,24,27, 5,16,11,21,30)( 4,18, 9,23,28, 6,15,12,22,29)(33,36)(34,35)$ |
| 12A | $12^{2},6^{2}$ | $120$ | $12$ | $32$ | $( 1,21,32, 4,19,33, 2,22,31, 3,20,34)( 5,23,36, 6,24,35)( 7,28,14,10,26,15, 8,27,13, 9,25,16)(11,29,17,12,30,18)$ |
| 15A1 | $15^{2},3^{2}$ | $96$ | $15$ | $32$ | $( 1, 6, 4)( 2, 5, 3)( 7,36,21,26,17,10,32,24,27,13,11,33,20,30,16)( 8,35,22,25,18, 9,31,23,28,14,12,34,19,29,15)$ |
| 15A2 | $15^{2},3^{2}$ | $96$ | $15$ | $32$ | $( 1, 4, 6)( 2, 3, 5)( 7,21,17,32,27,11,20,16,36,26,10,24,13,33,30)( 8,22,18,31,28,12,19,15,35,25, 9,23,14,34,29)$ |
| 20A1 | $20,10,4,2$ | $72$ | $20$ | $32$ | $( 1,36,26,23,14, 5,32,29,19,17, 2,35,25,24,13, 6,31,30,20,18)( 3,34,27,22,16, 4,33,28,21,15)( 7,12, 8,11)( 9,10)$ |
| 20A3 | $20,10,4,2$ | $72$ | $20$ | $32$ | $( 1,23,32,17,25, 6,20,36,14,29, 2,24,31,18,26, 5,19,35,13,30)( 3,22,33,15,27, 4,21,34,16,28)( 7,11, 8,12)( 9,10)$ |
Malle's constant $a(G)$: $1/12$
Character table
| 1A | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 3C | 4A | 4B | 5A1 | 5A2 | 6A | 6B | 6C | 10A1 | 10A3 | 10B1 | 10B3 | 12A | 15A1 | 15A2 | 20A1 | 20A3 | ||
| Size | 1 | 3 | 6 | 15 | 45 | 90 | 8 | 20 | 160 | 6 | 90 | 12 | 12 | 60 | 120 | 120 | 36 | 36 | 72 | 72 | 120 | 96 | 96 | 72 | 72 | |
| 2 P | 1A | 1A | 1A | 1A | 1A | 1A | 3A | 3B | 3C | 2A | 2A | 5A2 | 5A1 | 3B | 3B | 3A | 5A2 | 5A1 | 5A1 | 5A2 | 6A | 15A2 | 15A1 | 10A1 | 10A3 | |
| 3 P | 1A | 2A | 2B | 2C | 2D | 2E | 1A | 1A | 1A | 4A | 4B | 5A2 | 5A1 | 2A | 2B | 2C | 10A3 | 10A1 | 10B3 | 10B1 | 4A | 5A1 | 5A2 | 20A3 | 20A1 | |
| 5 P | 1A | 2A | 2B | 2C | 2D | 2E | 3A | 3B | 3C | 4A | 4B | 1A | 1A | 6A | 6B | 6C | 2A | 2A | 2B | 2B | 12A | 3A | 3A | 4A | 4A | |
| Type | ||||||||||||||||||||||||||
| 1440.5848.1a | R | |||||||||||||||||||||||||
| 1440.5848.1b | R | |||||||||||||||||||||||||
| 1440.5848.2a | R | |||||||||||||||||||||||||
| 1440.5848.3a | R | |||||||||||||||||||||||||
| 1440.5848.3b | R | |||||||||||||||||||||||||
| 1440.5848.3c1 | R | |||||||||||||||||||||||||
| 1440.5848.3c2 | R | |||||||||||||||||||||||||
| 1440.5848.3d1 | R | |||||||||||||||||||||||||
| 1440.5848.3d2 | R | |||||||||||||||||||||||||
| 1440.5848.4a | R | |||||||||||||||||||||||||
| 1440.5848.4b | R | |||||||||||||||||||||||||
| 1440.5848.5a | R | |||||||||||||||||||||||||
| 1440.5848.5b | R | |||||||||||||||||||||||||
| 1440.5848.6a1 | R | |||||||||||||||||||||||||
| 1440.5848.6a2 | R | |||||||||||||||||||||||||
| 1440.5848.8a | R | |||||||||||||||||||||||||
| 1440.5848.9a1 | R | |||||||||||||||||||||||||
| 1440.5848.9a2 | R | |||||||||||||||||||||||||
| 1440.5848.9b1 | R | |||||||||||||||||||||||||
| 1440.5848.9b2 | R | |||||||||||||||||||||||||
| 1440.5848.10a | R | |||||||||||||||||||||||||
| 1440.5848.12a | R | |||||||||||||||||||||||||
| 1440.5848.12b | R | |||||||||||||||||||||||||
| 1440.5848.15a | R | |||||||||||||||||||||||||
| 1440.5848.15b | R |
Regular extensions
Data not computed