Show commands: Magma
Group invariants
Abstract group: | $D_{21}$ |
| |
Order: | $42=2 \cdot 3 \cdot 7$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $42$ |
| |
Transitive number $t$: | $5$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $42$ |
| |
Generators: | $(1,17)(2,18)(3,16)(4,15)(5,13)(6,14)(7,8)(9,12)(10,11)(19,40)(20,39)(21,38)(22,37)(23,41)(24,42)(25,35)(26,36)(27,33)(28,34)(29,32)(30,31)$, $(1,9,16,24,29,31,41,4,11,18,20,26,34,37,6,7,13,21,27,35,40)(2,10,15,23,30,32,42,3,12,17,19,25,33,38,5,8,14,22,28,36,39)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $6$: $S_3$ $14$: $D_{7}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 6: $S_3$
Degree 7: $D_{7}$
Degree 14: $D_{7}$
Degree 21: $D_{21}$
Low degree siblings
21T5Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{42}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{21}$ | $21$ | $2$ | $21$ | $( 1,17)( 2,18)( 3,16)( 4,15)( 5,13)( 6,14)( 7, 8)( 9,12)(10,11)(19,40)(20,39)(21,38)(22,37)(23,41)(24,42)(25,35)(26,36)(27,33)(28,34)(29,32)(30,31)$ |
3A | $3^{14}$ | $2$ | $3$ | $28$ | $( 1, 4, 6)( 2, 3, 5)( 7, 9,11)( 8,10,12)(13,16,18)(14,15,17)(19,22,23)(20,21,24)(25,28,30)(26,27,29)(31,34,35)(32,33,36)(37,40,41)(38,39,42)$ |
7A1 | $7^{6}$ | $2$ | $7$ | $36$ | $( 1,34,24, 7,41,27,18)( 2,33,23, 8,42,28,17)( 3,36,19,10,38,30,14)( 4,35,20, 9,37,29,13)( 5,32,22,12,39,25,15)( 6,31,21,11,40,26,16)$ |
7A2 | $7^{6}$ | $2$ | $7$ | $36$ | $( 1,24,41,18,34, 7,27)( 2,23,42,17,33, 8,28)( 3,19,38,14,36,10,30)( 4,20,37,13,35, 9,29)( 5,22,39,15,32,12,25)( 6,21,40,16,31,11,26)$ |
7A3 | $7^{6}$ | $2$ | $7$ | $36$ | $( 1, 7,18,24,27,34,41)( 2, 8,17,23,28,33,42)( 3,10,14,19,30,36,38)( 4, 9,13,20,29,35,37)( 5,12,15,22,25,32,39)( 6,11,16,21,26,31,40)$ |
21A1 | $21^{2}$ | $2$ | $21$ | $40$ | $( 1,29,11,34,13,40,24, 4,26, 7,35,16,41,20, 6,27, 9,31,18,37,21)( 2,30,12,33,14,39,23, 3,25, 8,36,15,42,19, 5,28,10,32,17,38,22)$ |
21A2 | $21^{2}$ | $2$ | $21$ | $40$ | $( 1,11,13,24,26,35,41, 6, 9,18,21,29,34,40, 4, 7,16,20,27,31,37)( 2,12,14,23,25,36,42, 5,10,17,22,30,33,39, 3, 8,15,19,28,32,38)$ |
21A4 | $21^{2}$ | $2$ | $21$ | $40$ | $( 1,13,26,41, 9,21,34, 4,16,27,37,11,24,35, 6,18,29,40, 7,20,31)( 2,14,25,42,10,22,33, 3,15,28,38,12,23,36, 5,17,30,39, 8,19,32)$ |
21A5 | $21^{2}$ | $2$ | $21$ | $40$ | $( 1,40,35,27,21,13, 7, 6,37,34,26,20,18,11, 4,41,31,29,24,16, 9)( 2,39,36,28,22,14, 8, 5,38,33,25,19,17,12, 3,42,32,30,23,15,10)$ |
21A8 | $21^{2}$ | $2$ | $21$ | $40$ | $( 1,26, 9,34,16,37,24, 6,29, 7,31,13,41,21, 4,27,11,35,18,40,20)( 2,25,10,33,15,38,23, 5,30, 8,32,14,42,22, 3,28,12,36,17,39,19)$ |
21A10 | $21^{2}$ | $2$ | $21$ | $40$ | $( 1,35,21, 7,37,26,18, 4,31,24, 9,40,27,13, 6,34,20,11,41,29,16)( 2,36,22, 8,38,25,17, 3,32,23,10,39,28,14, 5,33,19,12,42,30,15)$ |
Malle's constant $a(G)$: $1/21$
Character table
1A | 2A | 3A | 7A1 | 7A2 | 7A3 | 21A1 | 21A2 | 21A4 | 21A5 | 21A8 | 21A10 | ||
Size | 1 | 21 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
2 P | 1A | 1A | 3A | 7A2 | 7A3 | 7A1 | 21A2 | 21A4 | 21A8 | 21A10 | 21A5 | 21A1 | |
3 P | 1A | 2A | 1A | 7A3 | 7A1 | 7A2 | 7A1 | 7A2 | 7A3 | 7A2 | 7A1 | 7A3 | |
7 P | 1A | 2A | 3A | 1A | 1A | 1A | 3A | 3A | 3A | 3A | 3A | 3A | |
Type | |||||||||||||
42.5.1a | R | ||||||||||||
42.5.1b | R | ||||||||||||
42.5.2a | R | ||||||||||||
42.5.2b1 | R | ||||||||||||
42.5.2b2 | R | ||||||||||||
42.5.2b3 | R | ||||||||||||
42.5.2c1 | R | ||||||||||||
42.5.2c2 | R | ||||||||||||
42.5.2c3 | R | ||||||||||||
42.5.2c4 | R | ||||||||||||
42.5.2c5 | R | ||||||||||||
42.5.2c6 | R |
Regular extensions
Data not computed