Properties

Label 42.5
Order \( 2 \cdot 3 \cdot 7 \)
Exponent \( 2 \cdot 3 \cdot 7 \)
Nilpotent no
Solvable yes
$\card{G^{\mathrm{ab}}}$ \( 2 \)
$\card{Z(G)}$ \( 1 \)
$\card{\Aut(G)}$ \( 2^{2} \cdot 3^{2} \cdot 7 \)
$\card{\mathrm{Out}(G)}$ \( 2 \cdot 3 \)
Perm deg. $10$
Trans deg. $21$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content magma:G := DihedralGroup(21);
 
Copy content gap:G := DihedralGroup(42);
 
Copy content sage:G = DihedralGroup(21)
 
Copy content sage_gap:G = libgap.SmallGroup(42, 5)
 
Copy content comment:Define the group as a permutation group
 

Group information

Description:$D_{21}$
Order: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(42\)\(\medspace = 2 \cdot 3 \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$S_3\times F_7$, of order \(252\)\(\medspace = 2^{2} \cdot 3^{2} \cdot 7 \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$, $C_3$, $C_7$
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian, a Z-group (hence solvable, supersolvable, monomial, metacyclic, metabelian, and an A-group), and hyperelementary for $p = 2$.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 7 21
Elements 1 21 2 6 12 42
Conjugacy classes   1 1 1 3 6 12
Divisions 1 1 1 1 1 5
Autjugacy classes 1 1 1 1 1 5

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 6 12
Irr. complex chars.   2 10 0 0 12
Irr. rational chars. 2 1 1 1 5

Minimal presentations

Permutation degree:$10$
Transitive degree:$21$
Rank: $2$
Inequivalent generating pairs: $3$

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 2 2 12
Arbitrary 2 2 8

Constructions

Show commands: Gap / Magma / SageMath


Presentation: $\langle a, b \mid a^{2}=b^{21}=1, b^{a}=b^{20} \rangle$ Copy content Toggle raw display
Copy content comment:Define the group with the given generators and relations
 
Copy content magma:G := PCGroup([3, -2, -3, -7, 241, 22, 326]); a,b := Explode([G.1, G.2]); AssignNames(~G, ["a", "b", "b3"]);
 
Copy content gap:G := PcGroupCode(64747739,42); a := G.1; b := G.2;
 
Copy content sage:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(64747739,42)'); a = G.1; b = G.2;
 
Copy content sage_gap:# This uses Sage's interface to GAP, as Sage (currently) has no native support for PC groups G = gap.new('PcGroupCode(64747739,42)'); a = G.1; b = G.2;
 
Permutation group:Degree $10$ $\langle(2,3)(4,5)(6,7)(9,10), (8,9,10), (1,2,4,6,7,5,3)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 10 | (2,3)(4,5)(6,7)(9,10), (8,9,10), (1,2,4,6,7,5,3) >;
 
Copy content gap:G := Group( (2,3)(4,5)(6,7)(9,10), (8,9,10), (1,2,4,6,7,5,3) );
 
Copy content sage:G = PermutationGroup(['(2,3)(4,5)(6,7)(9,10)', '(8,9,10)', '(1,2,4,6,7,5,3)'])
 
Matrix group:$\left\langle \left(\begin{array}{rr} 1 & 0 \\ 0 & 40 \end{array}\right), \left(\begin{array}{rr} 4 & 7 \\ 8 & 4 \end{array}\right) \right\rangle \subseteq \GL_{2}(\F_{41})$
Copy content comment:Define the group as a matrix group with coefficients in GLFp
 
Copy content magma:G := MatrixGroup< 2, GF(41) | [[1, 0, 0, 40], [4, 7, 8, 4]] >;
 
Copy content gap:G := Group([[[ Z(41)^0, 0*Z(41) ], [ 0*Z(41), Z(41)^20 ]], [[ Z(41)^12, Z(41)^39 ], [ Z(41)^38, Z(41)^12 ]]]);
 
Copy content sage:MS = MatrixSpace(GF(41), 2, 2) G = MatrixGroup([MS([[1, 0], [0, 40]]), MS([[4, 7], [8, 4]])])
 
Transitive group: 21T5 42T5 more information
Direct product: not isomorphic to a non-trivial direct product
Semidirect product: $C_7$ $\,\rtimes\,$ $S_3$ $C_3$ $\,\rtimes\,$ $D_7$ $C_{21}$ $\,\rtimes\,$ $C_2$ more information
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product

Elements of the group are displayed as words in the presentation generators from the presentation above.

Homology

Abelianization: $C_{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_1$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 36 subgroups in 8 conjugacy classes, 5 normal, and all normal subgroups are characteristic.

Characteristic subgroups are shown in this color.

Special subgroups

Center: $Z \simeq$ $C_1$ $G/Z \simeq$ $D_{21}$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: $G' \simeq$ $C_{21}$ $G/G' \simeq$ $C_2$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: $\Phi \simeq$ $C_1$ $G/\Phi \simeq$ $D_{21}$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: $\operatorname{Fit} \simeq$ $C_{21}$ $G/\operatorname{Fit} \simeq$ $C_2$
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: $R \simeq$ $D_{21}$ $G/R \simeq$ $C_1$
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: $\operatorname{soc} \simeq$ $C_{21}$ $G/\operatorname{soc} \simeq$ $C_2$
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 
2-Sylow subgroup: $P_{ 2 } \simeq$ $C_2$
3-Sylow subgroup: $P_{ 3 } \simeq$ $C_3$
7-Sylow subgroup: $P_{ 7 } \simeq$ $C_7$

Subgroup diagram and profile

For the default diagram, subgroups are sorted vertically by the number of prime divisors (counted with multiplicity) in their orders.
To see subgroups sorted vertically by order instead, check this box.
Sorry, your browser does not support the subgroup diagram.

Subgroup information

Click on a subgroup in the diagram to see information about it.

Series

Derived series $D_{21}$ $\rhd$ $C_{21}$ $\rhd$ $C_1$
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series $D_{21}$ $\rhd$ $C_{21}$ $\rhd$ $C_7$ $\rhd$ $C_1$
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series $D_{21}$ $\rhd$ $C_{21}$
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series $C_1$
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 44 larger groups in the database.

This group is a maximal quotient of 42 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

1A 2A 3A 7A1 7A2 7A3 21A1 21A2 21A4 21A5 21A8 21A10
Size 1 21 2 2 2 2 2 2 2 2 2 2
2 P 1A 1A 3A 7A2 7A3 7A1 21A2 21A4 21A8 21A10 21A5 21A1
3 P 1A 2A 1A 7A3 7A1 7A2 7A1 7A2 7A3 7A2 7A1 7A3
7 P 1A 2A 3A 1A 1A 1A 3A 3A 3A 3A 3A 3A
Type
42.5.1a R 1 1 1 1 1 1 1 1 1 1 1 1
42.5.1b R 1 1 1 1 1 1 1 1 1 1 1 1
42.5.2a R 2 0 1 2 2 2 1 1 1 1 1 1
42.5.2b1 R 2 0 2 ζ73+ζ73 ζ71+ζ7 ζ72+ζ72 ζ72+ζ72 ζ71+ζ7 ζ73+ζ73 ζ73+ζ73 ζ71+ζ7 ζ72+ζ72
42.5.2b2 R 2 0 2 ζ72+ζ72 ζ73+ζ73 ζ71+ζ7 ζ71+ζ7 ζ73+ζ73 ζ72+ζ72 ζ72+ζ72 ζ73+ζ73 ζ71+ζ7
42.5.2b3 R 2 0 2 ζ71+ζ7 ζ72+ζ72 ζ73+ζ73 ζ73+ζ73 ζ72+ζ72 ζ71+ζ7 ζ71+ζ7 ζ72+ζ72 ζ73+ζ73
42.5.2c1 R 2 0 1 ζ219+ζ219 ζ213+ζ213 ζ216+ζ216 ζ218+ζ218 ζ2110+ζ2110 ζ215+ζ215 ζ212+ζ212 ζ214+ζ214 ζ211+ζ21
42.5.2c2 R 2 0 1 ζ219+ζ219 ζ213+ζ213 ζ216+ζ216 ζ211+ζ21 ζ214+ζ214 ζ212+ζ212 ζ215+ζ215 ζ2110+ζ2110 ζ218+ζ218
42.5.2c3 R 2 0 1 ζ216+ζ216 ζ219+ζ219 ζ213+ζ213 ζ2110+ζ2110 ζ212+ζ212 ζ211+ζ21 ζ218+ζ218 ζ215+ζ215 ζ214+ζ214
42.5.2c4 R 2 0 1 ζ216+ζ216 ζ219+ζ219 ζ213+ζ213 ζ214+ζ214 ζ215+ζ215 ζ218+ζ218 ζ211+ζ21 ζ212+ζ212 ζ2110+ζ2110
42.5.2c5 R 2 0 1 ζ213+ζ213 ζ216+ζ216 ζ219+ζ219 ζ215+ζ215 ζ211+ζ21 ζ2110+ζ2110 ζ214+ζ214 ζ218+ζ218 ζ212+ζ212
42.5.2c6 R 2 0 1 ζ213+ζ213 ζ216+ζ216 ζ219+ζ219 ζ212+ζ212 ζ218+ζ218 ζ214+ζ214 ζ2110+ζ2110 ζ211+ζ21 ζ215+ζ215

Rational character table

1A 2A 3A 7A 21A
Size 1 21 2 6 12
2 P 1A 1A 3A 7A 21A
3 P 1A 2A 1A 7A 7A
7 P 1A 2A 3A 1A 3A
42.5.1a 1 1 1 1 1
42.5.1b 1 1 1 1 1
42.5.2a 2 0 1 2 1
42.5.2b 6 0 6 1 1
42.5.2c 12 0 6 2 1