Show commands: Magma
Group invariants
Abstract group: | $D_{21}$ |
| |
Order: | $42=2 \cdot 3 \cdot 7$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $21$ |
| |
Transitive number $t$: | $5$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $1$ |
| |
Generators: | $(1,8)(2,7)(3,9)(4,6)(10,19)(11,21)(12,20)(13,17)(14,16)(15,18)$, $(1,17)(2,16)(3,18)(4,14)(5,13)(6,15)(7,11)(8,10)(9,12)(19,20)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ $6$: $S_3$ $14$: $D_{7}$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 3: $S_3$
Degree 7: $D_{7}$
Low degree siblings
42T5Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{21}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{10},1$ | $21$ | $2$ | $10$ | $( 2, 3)( 4,21)( 5,20)( 6,19)( 7,16)( 8,18)( 9,17)(10,13)(11,15)(12,14)$ |
3A | $3^{7}$ | $2$ | $3$ | $14$ | $( 1, 2, 3)( 4, 5, 6)( 7, 8, 9)(10,11,12)(13,14,15)(16,17,18)(19,20,21)$ |
7A1 | $7^{3}$ | $2$ | $7$ | $18$ | $( 1, 4, 9,12,14,17,21)( 2, 5, 7,10,15,18,19)( 3, 6, 8,11,13,16,20)$ |
7A2 | $7^{3}$ | $2$ | $7$ | $18$ | $( 1, 9,14,21, 4,12,17)( 2, 7,15,19, 5,10,18)( 3, 8,13,20, 6,11,16)$ |
7A3 | $7^{3}$ | $2$ | $7$ | $18$ | $( 1,12,21, 9,17, 4,14)( 2,10,19, 7,18, 5,15)( 3,11,20, 8,16, 6,13)$ |
21A1 | $21$ | $2$ | $21$ | $20$ | $( 1,18,11, 4,19,13, 9, 2,16,12, 5,20,14, 7, 3,17,10, 6,21,15, 8)$ |
21A2 | $21$ | $2$ | $21$ | $20$ | $( 1,11,19, 9,16, 5,14, 3,10,21, 8,18, 4,13, 2,12,20, 7,17, 6,15)$ |
21A4 | $21$ | $2$ | $21$ | $20$ | $( 1,19,16,14,10, 8, 4, 2,20,17,15,11, 9, 5, 3,21,18,13,12, 7, 6)$ |
21A5 | $21$ | $2$ | $21$ | $20$ | $( 1,13, 5,17, 8,19,12, 3,15, 4,16, 7,21,11, 2,14, 6,18, 9,20,10)$ |
21A8 | $21$ | $2$ | $21$ | $20$ | $( 1,16,10, 4,20,15, 9, 3,18,12, 6,19,14, 8, 2,17,11, 5,21,13, 7)$ |
21A10 | $21$ | $2$ | $21$ | $20$ | $( 1, 5, 8,12,15,16,21, 2, 6, 9,10,13,17,19, 3, 4, 7,11,14,18,20)$ |
Malle's constant $a(G)$: $1/10$
Character table
1A | 2A | 3A | 7A1 | 7A2 | 7A3 | 21A1 | 21A2 | 21A4 | 21A5 | 21A8 | 21A10 | ||
Size | 1 | 21 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | |
2 P | 1A | 1A | 3A | 7A2 | 7A3 | 7A1 | 21A2 | 21A4 | 21A8 | 21A10 | 21A5 | 21A1 | |
3 P | 1A | 2A | 1A | 7A3 | 7A1 | 7A2 | 7A1 | 7A2 | 7A3 | 7A2 | 7A1 | 7A3 | |
7 P | 1A | 2A | 3A | 1A | 1A | 1A | 3A | 3A | 3A | 3A | 3A | 3A | |
Type | |||||||||||||
42.5.1a | R | ||||||||||||
42.5.1b | R | ||||||||||||
42.5.2a | R | ||||||||||||
42.5.2b1 | R | ||||||||||||
42.5.2b2 | R | ||||||||||||
42.5.2b3 | R | ||||||||||||
42.5.2c1 | R | ||||||||||||
42.5.2c2 | R | ||||||||||||
42.5.2c3 | R | ||||||||||||
42.5.2c4 | R | ||||||||||||
42.5.2c5 | R | ||||||||||||
42.5.2c6 | R |
Regular extensions
Data not computed