Refine search
Results (1-50 of 164 matches)
NextLabel | Name | Order | Parity | Solvable | Subfields | Low Degree Siblings |
---|---|---|---|---|---|---|
21T1 | $C_{21}$ | $21$ | $1$ | ✓ | $C_3$, $C_7$ | |
21T2 | $C_7:C_3$ | $21$ | $1$ | ✓ | $C_3$, $C_7:C_3$ | 7T3 |
21T3 | $C_3\times D_7$ | $42$ | $-1$ | ✓ | $C_3$, $D_{7}$ | 42T3 |
21T4 | $F_7$ | $42$ | $-1$ | ✓ | $C_3$, $F_7$ | 7T4, 14T4, 42T4 |
21T5 | $D_{21}$ | $42$ | $1$ | ✓ | $S_3$, $D_{7}$ | 42T5 |
21T6 | $C_7\times S_3$ | $42$ | $-1$ | ✓ | $S_3$, $C_7$ | 42T6 |
21T7 | $C_3\times C_7:C_3$ | $63$ | $1$ | ✓ | $C_3$, $C_7:C_3$ | 21T7 x 2 |
21T8 | $S_3\times D_7$ | $84$ | $-1$ | ✓ | $S_3$, $D_{7}$ | 42T13, 42T14, 42T15 |
21T9 | $C_3\times F_7$ | $126$ | $-1$ | ✓ | $C_3$, $F_7$ | 21T9 x 2, 42T17 x 3 |
21T10 | $D_{21}:C_3$ | $126$ | $1$ | ✓ | $S_3$, $F_7$ | 42T18, 42T22 |
21T11 | $S_3\times C_7:C_3$ | $126$ | $-1$ | ✓ | $S_3$, $C_7:C_3$ | 42T19, 42T23 |
21T12 | $C_7:(C_7:C_3)$ | $147$ | $1$ | ✓ | $C_3$ | 21T12 |
21T13 | $C_7\times C_7:C_3$ | $147$ | $1$ | ✓ | $C_3$ | 21T13 |
21T14 | $\PSL(2,7)$ | $168$ | $1$ | $\GL(3,2)$ x 2 | 7T5 x 2, 8T37, 14T10 x 2, 24T284, 28T32, 42T37, 42T38 x 2 | |
21T15 | $S_3\times F_7$ | $252$ | $-1$ | ✓ | $S_3$, $F_7$ | 42T43, 42T44, 42T45, 42T52 |
21T16 | $C_7:(C_3\times D_7)$ | $294$ | $-1$ | ✓ | $C_3$ | 21T16, 42T55 x 2 |
21T17 | $C_7^2:S_3$ | $294$ | $1$ | ✓ | $S_3$ | 14T15, 21T18, 42T56, 42T57, 42T62 |
21T18 | $C_7^2:S_3$ | $294$ | $-1$ | ✓ | $S_3$ | 14T15, 21T17, 42T56, 42T57, 42T62 |
21T19 | $C_7:D_7:C_3$ | $294$ | $-1$ | ✓ | $C_3$ | 21T19, 42T58 x 2 |
21T20 | $\SO(3,7)$ | $336$ | $-1$ | 8T43, 14T16, 16T713, 24T707, 28T42, 28T46, 42T81, 42T82, 42T83 | ||
21T21 | $C_7^2:C_3:C_3$ | $441$ | $1$ | ✓ | $C_3$ | 21T21 |
21T22 | $C_3\times \PSL(2,7)$ | $504$ | $1$ | $C_3$, $\GL(3,2)$ | 21T22, 24T1355 x 2, 24T1356, 42T96 x 2, 42T103 x 2 | |
21T23 | $C_7^2:D_6$ | $588$ | $-1$ | ✓ | $S_3$ | 14T25, 21T23, 28T78, 42T110 x 2, 42T111 x 2, 42T112 x 2, 42T122 |
21T24 | $C_7^2:(C_3\times C_6)$ | $882$ | $-1$ | ✓ | $C_3$ | 21T24, 42T142 x 2 |
21T25 | $C_7^2:(C_3\times S_3)$ | $882$ | $1$ | ✓ | $S_3$ | 14T26, 21T26, 42T143, 42T144, 42T152, 42T153, 42T154, 42T155 |
21T26 | $C_7^2:(C_3\times S_3)$ | $882$ | $-1$ | ✓ | $S_3$ | 14T26, 21T25, 42T143, 42T144, 42T152, 42T153, 42T154, 42T155 |
21T27 | $S_3\times \PSL(2,7)$ | $1008$ | $-1$ | $S_3$, $\GL(3,2)$ | 21T27, 24T2671, 42T169 x 2, 42T170 x 2, 42T171 x 2, 42T175 x 2 | |
21T28 | $C_7\times C_7:(C_7:C_3)$ | $1029$ | $1$ | ✓ | $C_3$ | 21T28 x 11 |
21T29 | $C_7^2:(C_6\times S_3)$ | $1764$ | $-1$ | ✓ | $S_3$ | 14T37, 21T29, 28T170, 42T223 x 2, 42T224 x 2, 42T225 x 2, 42T252, 42T253, 42T254, 42T255 |
21T30 | t21n30 | $2058$ | $1$ | ✓ | $S_3$ | 21T30 x 5, 42T267 x 6, 42T280 x 3, 42T283 x 2 |
21T31 | t21n31 | $2058$ | $-1$ | ✓ | $C_3$ | 21T31 x 11, 42T268 x 12 |
21T32 | t21n32 | $2058$ | $-1$ | ✓ | $S_3$ | 21T32 x 5, 42T269 x 6, 42T281 x 3, 42T282 x 2 |
21T33 | $A_7$ | $2520$ | $1$ | 7T6, 15T47 x 2, 35T28, 42T294, 42T299 | ||
21T34 | t21n34 | $3087$ | $1$ | ✓ | $C_3$ | 21T34 x 11 |
21T35 | t21n35 | $3087$ | $1$ | ✓ | $C_3$ | 21T35 x 18 |
21T36 | t21n36 | $4116$ | $1$ | ✓ | $C_3$ | 28T275, 28T276 x 2, 42T390 x 2, 42T391, 42T406 x 2, 42T407 |
21T37 | t21n37 | $4116$ | $-1$ | ✓ | $S_3$ | 21T37 x 5, 42T392 x 6, 42T393 x 6, 42T394 x 6, 42T400 x 3, 42T401 x 2 |
21T38 | t21n38 | $5040$ | $-1$ | 7T7, 14T46, 30T565, 35T31, 42T411, 42T412, 42T413, 42T418 | ||
21T39 | t21n39 | $5103$ | $1$ | ✓ | $C_7$ | 21T39 x 51 |
21T40 | t21n40 | $6174$ | $-1$ | ✓ | $S_3$ | 21T40 x 5, 42T464 x 6, 42T473 x 3, 42T474 x 2 |
21T41 | t21n41 | $6174$ | $1$ | ✓ | $S_3$ | 21T41 x 5, 42T465 x 6, 42T472 x 3, 42T475 x 2 |
21T42 | t21n42 | $6174$ | $-1$ | ✓ | $C_3$ | 21T42 x 18, 42T466 x 19 |
21T43 | t21n43 | $6174$ | $-1$ | ✓ | $C_3$ | 21T43 x 11, 42T467 x 12 |
21T44 | t21n44 | $7560$ | $1$ | $C_3$, $A_7$ | 45T442 x 2 | |
21T45 | t21n45 | $8232$ | $-1$ | ✓ | $C_3$ | 28T349, 28T350 x 2, 42T533, 42T534, 42T535 x 2, 42T536 x 2, 42T537, 42T545 x 2, 42T546 |
21T46 | t21n46 | $8232$ | $-1$ | ✓ | $S_3$ | 28T347, 42T538, 42T539, 42T540, 42T548 |
21T47 | t21n47 | $8232$ | $1$ | ✓ | $S_3$ | 28T348, 42T541, 42T542, 42T543, 42T547 |
21T48 | t21n48 | $9261$ | $1$ | ✓ | $C_3$ | 21T48 x 3 |
21T49 | t21n49 | $9261$ | $1$ | ✓ | $C_3$ | |
21T50 | t21n50 | $10206$ | $-1$ | ✓ | $C_7$ | 21T50 x 51, 42T554 x 52 |
Results are complete for degrees $\leq 23$.