| 42T1 |
$C_{42}$ |
42 |
-1 |
Yes |
$C_2$, $C_3$, $C_6$, $C_7$, $C_{14}$, $C_{21}$ |
|
| 42T2 |
$C_2\times C_7:C_3$ |
42 |
-1 |
Yes |
$C_2$, $C_3$, $C_6$, $C_7:C_3$, $(C_7:C_3) \times C_2$, 21T2 |
|
| 42T3 |
$C_3\times D_7$ |
42 |
-1 |
Yes |
$C_2$, $C_3$, $C_6$, $D_{7}$, $D_{7}$, 21T3 |
|
| 42T4 |
$F_7$ |
42 |
-1 |
Yes |
$C_2$, $C_3$, $C_6$, $F_7$, $F_7$, 21T4 |
7T4 |
| 42T5 |
$D_{21}$ |
42 |
-1 |
Yes |
$C_2$, $S_3$, $S_3$, $D_{7}$, $D_{7}$, $D_{21}$ |
|
| 42T6 |
$C_7\times S_3$ |
42 |
-1 |
Yes |
$C_2$, $S_3$, $S_3$, $C_7$, $C_{14}$, 21T6 |
|
| 42T7 |
$C_7\times A_4$ |
84 |
1 |
Yes |
$C_3$, $A_4$, $C_7$, $C_{21}$ |
|
| 42T8 |
$C_7:A_4$ |
84 |
1 |
Yes |
$C_3$, $A_4$, $C_7:C_3$, 21T2 |
|
| 42T9 |
$C_6\times D_7$ |
84 |
-1 |
Yes |
$C_2$, $C_3$, $C_6$, $D_{7}$, $D_{14}$, 21T3 |
|
| 42T10 |
$C_2\times F_7$ |
84 |
-1 |
Yes |
$C_2$, $C_3$, $C_6$, $F_7$, $F_7 \times C_2$, 21T4 |
|
| 42T11 |
$D_{42}$ |
84 |
-1 |
Yes |
$C_2$, $S_3$, $D_{6}$, $D_{7}$, $D_{14}$, $D_{21}$ |
|
| 42T12 |
$C_{14}\times S_3$ |
84 |
-1 |
Yes |
$C_2$, $S_3$, $D_{6}$, $C_7$, $C_{14}$, 21T6 |
|
| 42T13 |
$S_3\times D_7$ |
84 |
-1 |
Yes |
$C_2$, $S_3$, $D_{6}$, $D_{7}$, $D_{14}$, 21T8 |
|
| 42T14 |
$S_3\times D_7$ |
84 |
-1 |
Yes |
$C_2$, $S_3$, $S_3$, $D_{7}$, $D_{14}$, 21T8 |
|
| 42T15 |
$S_3\times D_7$ |
84 |
-1 |
Yes |
$C_2$, $S_3$, $D_{6}$, $D_{7}$, $D_{7}$, 21T8 |
|
| 42T16 |
$C_6\times C_7:C_3$ |
126 |
-1 |
Yes |
$C_2$, $C_3$, $C_6$, $C_7:C_3$, $(C_7:C_3) \times C_2$, 21T7 |
|
| 42T17 |
$C_3\times F_7$ |
126 |
-1 |
Yes |
$C_2$, $C_3$, $C_6$, $F_7$, $F_7$, 21T9 |
|
| 42T18 |
$D_{21}:C_3$ |
126 |
-1 |
Yes |
$C_2$, $S_3$, $S_3$, $F_7$, $F_7$, 21T10 |
|
| 42T19 |
$S_3\times C_7:C_3$ |
126 |
-1 |
Yes |
$C_2$, $S_3$, $S_3$, $C_7:C_3$, $(C_7:C_3) \times C_2$, 21T11 |
|
| 42T20 |
$C_{21}\times S_3$ |
126 |
-1 |
Yes |
$C_2$, $S_3\times C_3$, $C_7$, $C_{14}$ |
|
| 42T21 |
$C_3\times D_{21}$ |
126 |
-1 |
Yes |
$C_2$, $S_3\times C_3$, $D_{7}$, $D_{7}$ |
|
| 42T22 |
$D_{21}:C_3$ |
126 |
-1 |
Yes |
$C_2$, $S_3\times C_3$, $F_7$, $F_7$ |
|
| 42T23 |
$S_3\times C_7:C_3$ |
126 |
-1 |
Yes |
$C_2$, $S_3\times C_3$, $C_7:C_3$, $(C_7:C_3) \times C_2$ |
|
| 42T24 |
$C_{14}\times A_4$ |
168 |
-1 |
Yes |
$C_3$, $A_4\times C_2$, $C_7$, $C_{21}$ |
|
| 42T25 |
$C_3\times F_8$ |
168 |
1 |
Yes |
$C_3$, $C_7$, 14T6, $C_{21}$ |
|
| 42T26 |
$F_8:C_3$ |
168 |
1 |
Yes |
$C_3$, $C_7:C_3$, 14T11, 21T2 |
8T36 |
| 42T27 |
$C_2\times C_7:A_4$ |
168 |
-1 |
Yes |
$C_3$, $A_4\times C_2$, $C_7:C_3$, 21T2 |
|
| 42T28 |
$A_4\times D_7$ |
168 |
1 |
Yes |
$C_3$, $A_4$, $D_{7}$, 21T3 |
|
| 42T29 |
$A_4\times D_7$ |
168 |
-1 |
Yes |
$C_3$, $A_4\times C_2$, $D_{7}$, 21T3 |
|
| 42T30 |
$D_7:A_4$ |
168 |
-1 |
Yes |
$C_3$, $A_4\times C_2$, $F_7$, 21T4 |
|
| 42T31 |
$D_7:A_4$ |
168 |
1 |
Yes |
$C_3$, $A_4$, $F_7$, 21T4 |
|
| 42T32 |
$C_7:S_4$ |
168 |
1 |
Yes |
$S_3$, $S_4$, $D_{7}$, $D_{21}$ |
|
| 42T33 |
$C_7:S_4$ |
168 |
-1 |
Yes |
$S_3$, $S_4$, $D_{7}$, $D_{21}$ |
|
| 42T34 |
$C_7\times S_4$ |
168 |
-1 |
Yes |
$S_3$, $S_4$, $C_7$, 21T6 |
|
| 42T35 |
$C_7\times S_4$ |
168 |
1 |
Yes |
$S_3$, $S_4$, $C_7$, 21T6 |
|
| 42T36 |
$C_2\times S_3\times D_7$ |
168 |
-1 |
Yes |
$C_2$, $S_3$, $D_{6}$, $D_{7}$, $D_{14}$, 21T8 |
|
| 42T37 |
$\PSL(2,7)$ |
168 |
1 |
No |
$\GL(3,2)$ x 2, $\PSL(2,7)$ |
7T5 x 2, 8T37 |
| 42T38 |
$\PSL(2,7)$ |
168 |
1 |
No |
$\GL(3,2)$ x 2, $\PSL(2,7)$, $\PSL(2,7)$ |
7T5 x 2, 8T37 |
| 42T39 |
$A_4\times C_7:C_3$ |
252 |
1 |
Yes |
$C_3$, $A_4$, $C_7:C_3$, 21T7 |
|
| 42T40 |
$C_6\times F_7$ |
252 |
-1 |
Yes |
$C_2$, $C_3$, $C_6$, $F_7$, $F_7 \times C_2$, 21T9 |
|
| 42T41 |
$C_2\times D_{21}:C_3$ |
252 |
-1 |
Yes |
$C_2$, $S_3$, $D_{6}$, $F_7$, $F_7 \times C_2$, 21T10 |
|
| 42T42 |
$C_2\times S_3\times C_7:C_3$ |
252 |
-1 |
Yes |
$C_2$, $S_3$, $D_{6}$, $C_7:C_3$, $(C_7:C_3) \times C_2$, 21T11 |
|
| 42T43 |
$S_3\times F_7$ |
252 |
-1 |
Yes |
$C_2$, $S_3$, $D_{6}$, $F_7$, $F_7 \times C_2$, 21T15 |
|
| 42T44 |
$S_3\times F_7$ |
252 |
-1 |
Yes |
$C_2$, $S_3$, $D_{6}$, $F_7$, $F_7$, 21T15 |
|
| 42T45 |
$S_3\times F_7$ |
252 |
-1 |
Yes |
$C_2$, $S_3$, $S_3$, $F_7$, $F_7 \times C_2$, 21T15 |
|
| 42T46 |
$C_7\times S_3^2$ |
252 |
-1 |
Yes |
$C_2$, $S_3^2$, $C_7$, $C_{14}$ |
|
| 42T47 |
$C_7\times C_3:S_3.C_2$ |
252 |
1 |
Yes |
$C_2$, $C_3^2:C_4$, $C_7$, $C_{14}$ |
|
| 42T48 |
$C_3^2:(C_7:C_4)$ |
252 |
1 |
Yes |
$C_2$, $C_3^2:C_4$, $D_{7}$, $D_{7}$ |
|
| 42T49 |
$D_{21}:S_3$ |
252 |
-1 |
Yes |
$C_2$, $S_3^2$, $D_{7}$, $D_{7}$ |
|
| 42T50 |
$C_3\times S_3\times D_7$ |
252 |
-1 |
Yes |
$C_2$, $S_3\times C_3$, $D_{7}$, $D_{14}$ |
|