Show commands: Magma
Group invariants
Abstract group: | $C_2\times \PSL(2,7)\wr S_3$ |
| |
Order: | $56899584=2^{11} \cdot 3^{4} \cdot 7^{3}$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | no |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $42$ |
| |
Transitive number $t$: | $3420$ |
| |
Parity: | $-1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $2$ |
| |
Generators: | $(1,6,12,3)(2,5,11,4)(7,13)(8,14)(9,10)(15,40,23,30,18,33,28,32)(16,39,24,29,17,34,27,31)(19,41,26,38)(20,42,25,37)(21,35)(22,36)$, $(1,21,37,13,28,40)(2,22,38,14,27,39)(3,19,32,4,20,31)(5,24,29,6,23,30)(7,25,34,11,15,41)(8,26,33,12,16,42)(9,18,36,10,17,35)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_2^2$ $6$: $S_3$ $12$: $D_{6}$ $28449792$: 21T146 Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$
Degree 3: $S_3$
Degree 6: $D_{6}$
Degree 7: None
Degree 14: None
Degree 21: 21T146
Low degree siblings
42T3420 x 3, 42T3421 x 4Siblings are shown with degree $\leq 47$
A number field with this Galois group has exactly one arithmetically equivalent field.
Conjugacy classes
Conjugacy classes not computed
Character table
Character table not computed
Regular extensions
Data not computed