Properties

Label 56899584.f
Order \( 2^{11} \cdot 3^{4} \cdot 7^{3} \)
Exponent \( 2^{3} \cdot 3^{2} \cdot 7 \)
Nilpotent no
Solvable no
$\card{G^{\mathrm{ab}}}$ \( 2^{2} \)
$\card{Z(G)}$ 2
$\card{\Aut(G)}$ \( 2^{12} \cdot 3^{4} \cdot 7^{3} \)
$\card{\mathrm{Out}(G)}$ \( 2^{2} \)
Perm deg. $23$
Trans deg. $42$
Rank $2$

Related objects

Downloads

Learn more

Show commands: Gap / Magma / SageMath

Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 23 | (1,3)(2,5,8,13,18,21,11,17)(4,6,10,16)(7,12,19,20)(9,15)(22,23), (1,2,4)(3,6,9,14,8,10)(5,7,11)(12,18,21,19,15,13)(16,17,20)(22,23) >;
 
Copy content gap:G := Group( (1,3)(2,5,8,13,18,21,11,17)(4,6,10,16)(7,12,19,20)(9,15)(22,23), (1,2,4)(3,6,9,14,8,10)(5,7,11)(12,18,21,19,15,13)(16,17,20)(22,23) );
 
Copy content sage:G = PermutationGroup(['(1,3)(2,5,8,13,18,21,11,17)(4,6,10,16)(7,12,19,20)(9,15)(22,23)', '(1,2,4)(3,6,9,14,8,10)(5,7,11)(12,18,21,19,15,13)(16,17,20)(22,23)'])
 

Group information

Description:$C_2\times \PSL(2,7)\wr S_3$
Order: \(56899584\)\(\medspace = 2^{11} \cdot 3^{4} \cdot 7^{3} \)
Copy content comment:Order of the group
 
Copy content magma:Order(G);
 
Copy content gap:Order(G);
 
Copy content sage:G.order()
 
Copy content sage_gap:G.Order()
 
Exponent: \(504\)\(\medspace = 2^{3} \cdot 3^{2} \cdot 7 \)
Copy content comment:Exponent of the group
 
Copy content magma:Exponent(G);
 
Copy content gap:Exponent(G);
 
Copy content sage:G.exponent()
 
Copy content sage_gap:G.Exponent()
 
Automorphism group:$C_2\times \PSL(2,7)^3.D_6$, of order \(113799168\)\(\medspace = 2^{12} \cdot 3^{4} \cdot 7^{3} \)
Copy content comment:Automorphism group
 
Copy content gap:AutomorphismGroup(G);
 
Copy content magma:AutomorphismGroup(G);
 
Copy content sage_gap:G.AutomorphismGroup()
 
Composition factors:$C_2$ x 2, $C_3$, $\PSL(2,7)$ x 3
Copy content comment:Composition factors of the group
 
Copy content magma:CompositionFactors(G);
 
Copy content gap:CompositionSeries(G);
 
Copy content sage:G.composition_series()
 
Copy content sage_gap:G.CompositionSeries()
 
Derived length:$2$
Copy content comment:Derived length of the group
 
Copy content magma:DerivedLength(G);
 
Copy content gap:DerivedLength(G);
 
Copy content sage_gap:G.DerivedLength()
 

This group is nonabelian and nonsolvable.

Copy content comment:Determine if the group G is abelian
 
Copy content magma:IsAbelian(G);
 
Copy content gap:IsAbelian(G);
 
Copy content sage:G.is_abelian()
 
Copy content sage_gap:G.IsAbelian()
 
Copy content comment:Determine if the group G is cyclic
 
Copy content magma:IsCyclic(G);
 
Copy content gap:IsCyclic(G);
 
Copy content sage:G.is_cyclic()
 
Copy content sage_gap:G.IsCyclic()
 
Copy content comment:Determine if the group G is nilpotent
 
Copy content magma:IsNilpotent(G);
 
Copy content gap:IsNilpotentGroup(G);
 
Copy content sage:G.is_nilpotent()
 
Copy content sage_gap:G.IsNilpotentGroup()
 
Copy content comment:Determine if the group G is solvable
 
Copy content magma:IsSolvable(G);
 
Copy content gap:IsSolvableGroup(G);
 
Copy content sage:G.is_solvable()
 
Copy content sage_gap:G.IsSolvableGroup()
 
Copy content comment:Determine if the group G is supersolvable
 
Copy content gap:IsSupersolvableGroup(G);
 
Copy content sage:G.is_supersolvable()
 
Copy content sage_gap:G.IsSupersolvableGroup()
 
Copy content comment:Determine if the group G is simple
 
Copy content magma:IsSimple(G);
 
Copy content gap:IsSimpleGroup(G);
 
Copy content sage_gap:G.IsSimpleGroup()
 

Group statistics

Copy content comment:Compute statistics for the group G
 
Copy content magma:// Magma code to output the first two rows of the group statistics table element_orders := [Order(g) : g in G]; orders := Set(element_orders); printf "Orders: %o\n", orders; printf "Elements: %o %o\n", [#[x : x in element_orders | x eq n] : n in orders], Order(G); cc_orders := [cc[1] : cc in ConjugacyClasses(G)]; printf "Conjugacy classes: %o %o\n", [#[x : x in cc_orders | x eq n] : n in orders], #cc_orders;
 
Copy content gap:# Gap code to output the first two rows of the group statistics table element_orders := List(Elements(G), g -> Order(g)); orders := Set(element_orders); Print("Orders: ", orders, "\n"); element_counts := List(orders, n -> Length(Filtered(element_orders, x -> x = n))); Print("Elements: ", element_counts, " ", Size(G), "\n"); cc_orders := List(ConjugacyClasses(G), cc -> Order(Representative(cc))); cc_counts := List(orders, n -> Length(Filtered(cc_orders, x -> x = n))); Print("Conjugacy classes: ", cc_counts, " ", Length(ConjugacyClasses(G)), "\n");
 
Copy content sage:# Sage code to output the first two rows of the group statistics table element_orders = [g.order() for g in G] orders = sorted(list(set(element_orders))) print("Orders:", orders) print("Elements:", [element_orders.count(n) for n in orders], G.order()) cc_orders = [cc[0].order() for cc in G.conjugacy_classes()] print("Conjugacy classes:", [cc_orders.count(n) for n in orders], len(cc_orders))
 

Order 1 2 3 4 6 7 8 9 12 14 18 21 24 28 42 56 84
Elements 1 43471 241640 1900080 7629272 117648 2709504 3161088 10301760 3982320 3161088 3564288 2370816 4669056 9660672 2032128 1354752 56899584
Conjugacy classes   1 11 4 20 20 9 6 1 14 43 1 9 2 26 21 4 4 196
Divisions 1 11 4 20 20 5 6 1 14 23 1 5 2 14 11 2 2 142
Autjugacy classes 1 9 4 16 16 5 3 1 12 18 1 5 1 12 9 1 2 116

Copy content comment:Compute statistics about the characters of G
 
Copy content magma:// Outputs [<d_1,c_1>, <d_2,c_2>, ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content gap:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i CharacterDegrees(G);
 
Copy content sage:# Outputs [[d_1,c_1], [d_2,c_2], ...] where c_i is the number of irr. complex chars. of G with degree d_i character_degrees = [c[0] for c in G.character_table()] [[n, character_degrees.count(n)] for n in set(character_degrees)]
 
Copy content sage_gap:G.CharacterDegrees()
 

Dimension 1 2 9 18 21 24 27 54 81 108 126 144 147 162 189 192 216 252 288 324 336 343 378 432 441 512 576 648 686 756 864 882 1008 1024 1152 1176 1344 1512 1728 2016
Irr. complex chars.   4 2 8 4 4 4 16 6 8 8 4 4 4 8 8 4 12 2 2 10 2 4 2 4 8 4 8 0 2 8 8 4 4 2 4 4 4 0 0 2 196
Irr. rational chars. 4 2 0 8 4 4 0 10 0 6 0 0 4 4 0 4 6 4 4 6 2 4 6 8 0 4 0 4 2 4 4 8 0 2 8 4 4 2 2 4 142

Minimal presentations

Permutation degree:$23$
Transitive degree:$42$
Rank: $2$
Inequivalent generating pairs: not computed

Minimal degrees of faithful linear representations

Over $\mathbb{C}$ Over $\mathbb{R}$ Over $\mathbb{Q}$
Irreducible 9 18 18
Arbitrary not computed not computed not computed

Constructions

Show commands: Gap / Magma / SageMath


Permutation group:Degree $23$ $\langle(1,3)(2,5,8,13,18,21,11,17)(4,6,10,16)(7,12,19,20)(9,15)(22,23), (1,2,4)(3,6,9,14,8,10)(5,7,11)(12,18,21,19,15,13)(16,17,20)(22,23)\rangle$ Copy content Toggle raw display
Copy content comment:Define the group as a permutation group
 
Copy content magma:G := PermutationGroup< 23 | (1,3)(2,5,8,13,18,21,11,17)(4,6,10,16)(7,12,19,20)(9,15)(22,23), (1,2,4)(3,6,9,14,8,10)(5,7,11)(12,18,21,19,15,13)(16,17,20)(22,23) >;
 
Copy content gap:G := Group( (1,3)(2,5,8,13,18,21,11,17)(4,6,10,16)(7,12,19,20)(9,15)(22,23), (1,2,4)(3,6,9,14,8,10)(5,7,11)(12,18,21,19,15,13)(16,17,20)(22,23) );
 
Copy content sage:G = PermutationGroup(['(1,3)(2,5,8,13,18,21,11,17)(4,6,10,16)(7,12,19,20)(9,15)(22,23)', '(1,2,4)(3,6,9,14,8,10)(5,7,11)(12,18,21,19,15,13)(16,17,20)(22,23)'])
 
Transitive group: 42T3420 42T3421 more information
Direct product: $C_2$ $\, \times\, $ $(\PSL(2,7)\wr S_3)$
Semidirect product: not computed
Trans. wreath product: not isomorphic to a non-trivial transitive wreath product
Possibly split product: $\PSL(2,7)^3$ . $D_6$ $(\PSL(2,7)\wr S_3)$ . $C_2$ (2) $C_2$ . $(\PSL(2,7)\wr S_3)$ $(\PSL(2,7)\wr C_3)$ . $C_2^2$ all 6

Elements of the group are displayed as permutations of degree 23.

Homology

Abelianization: $C_{2}^{2} $
Copy content comment:The abelianization of the group
 
Copy content magma:quo< G | CommutatorSubgroup(G) >;
 
Copy content gap:FactorGroup(G, DerivedSubgroup(G));
 
Copy content sage:G.quotient(G.commutator())
 
Schur multiplier: $C_{2}^{2}$
Copy content comment:The Schur multiplier of the group
 
Copy content gap:AbelianInvariantsMultiplier(G);
 
Copy content sage:G.homology(2)
 
Copy content sage_gap:G.AbelianInvariantsMultiplier()
 
Commutator length: $1$
Copy content comment:The commutator length of the group
 
Copy content gap:CommutatorLength(G);
 
Copy content sage_gap:G.CommutatorLength()
 

Subgroups

Copy content comment:List of subgroups of the group
 
Copy content magma:Subgroups(G);
 
Copy content gap:AllSubgroups(G);
 
Copy content sage:G.subgroups()
 
Copy content sage_gap:G.AllSubgroups()
 

There are 9 normal subgroups (7 characteristic).

Characteristic subgroups are shown in this color. Normal (but not characteristic) subgroups are shown in this color.

Special subgroups

Center: a subgroup isomorphic to $C_2$
Copy content comment:Center of the group
 
Copy content magma:Center(G);
 
Copy content gap:Center(G);
 
Copy content sage:G.center()
 
Copy content sage_gap:G.Center()
 
Commutator: a subgroup isomorphic to $\PSL(2,7)\wr C_3$
Copy content comment:Commutator subgroup of the group G
 
Copy content magma:CommutatorSubgroup(G);
 
Copy content gap:DerivedSubgroup(G);
 
Copy content sage:G.commutator()
 
Copy content sage_gap:G.DerivedSubgroup()
 
Frattini: a subgroup isomorphic to $C_1$
Copy content comment:Frattini subgroup of the group G
 
Copy content magma:FrattiniSubgroup(G);
 
Copy content gap:FrattiniSubgroup(G);
 
Copy content sage:G.frattini_subgroup()
 
Copy content sage_gap:G.FrattiniSubgroup()
 
Fitting: not computed
Copy content comment:Fitting subgroup of the group G
 
Copy content magma:FittingSubgroup(G);
 
Copy content gap:FittingSubgroup(G);
 
Copy content sage:G.fitting_subgroup()
 
Copy content sage_gap:G.FittingSubgroup()
 
Radical: not computed
Copy content comment:Radical of the group G
 
Copy content magma:Radical(G);
 
Copy content gap:SolvableRadical(G);
 
Copy content sage_gap:G.SolvableRadical()
 
Socle: not computed
Copy content comment:Socle of the group G
 
Copy content magma:Socle(G);
 
Copy content gap:Socle(G);
 
Copy content sage:G.socle()
 
Copy content sage_gap:G.Socle()
 

Subgroup diagram and profile

Series

Derived series not computed
Copy content comment:Derived series of the group GF
 
Copy content magma:DerivedSeries(G);
 
Copy content gap:DerivedSeriesOfGroup(G);
 
Copy content sage:G.derived_series()
 
Copy content sage_gap:G.DerivedSeriesOfGroup()
 
Chief series not computed
Copy content comment:Chief series of the group G
 
Copy content magma:ChiefSeries(G);
 
Copy content gap:ChiefSeries(G);
 
Copy content sage_gap:G.ChiefSeries()
 
Lower central series not computed
Copy content comment:The lower central series of the group G
 
Copy content magma:LowerCentralSeries(G);
 
Copy content gap:LowerCentralSeriesOfGroup(G);
 
Copy content sage:G.lower_central_series()
 
Copy content sage_gap:G.LowerCentralSeriesOfGroup()
 
Upper central series not computed
Copy content comment:The upper central series of the group G
 
Copy content magma:UpperCentralSeries(G);
 
Copy content gap:UpperCentralSeriesOfGroup(G);
 
Copy content sage:G.upper_central_series()
 
Copy content sage_gap:G.UpperCentralSeriesOfGroup()
 

Supergroups

This group is a maximal subgroup of 3 larger groups in the database.

This group is a maximal quotient of 3 larger groups in the database.

Character theory

Copy content comment:Character table
 
Copy content magma:CharacterTable(G); // Output not guaranteed to exactly match the LMFDB table
 
Copy content gap:CharacterTable(G); # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage:G.character_table() # Output not guaranteed to exactly match the LMFDB table
 
Copy content sage_gap:G.CharacterTable() # Output not guaranteed to exactly match the LMFDB table
 

Complex character table

See the $196 \times 196$ character table (warning: may be slow to load). Alternatively, you may search for characters of this group with desired properties.

Rational character table

See the $142 \times 142$ rational character table (warning: may be slow to load).