Show commands: Magma
Group invariants
Abstract group: | $C_2\times F_5$ |
| |
Order: | $40=2^{3} \cdot 5$ |
| |
Cyclic: | no |
| |
Abelian: | no |
| |
Solvable: | yes |
| |
Nilpotency class: | not nilpotent |
|
Group action invariants
Degree $n$: | $20$ |
| |
Transitive number $t$: | $13$ |
| |
Parity: | $1$ |
| |
Primitive: | no |
| |
$\card{\Aut(F/K)}$: | $4$ |
| |
Generators: | $(1,13,18,6)(2,14,17,5)(3,7,16,11)(4,8,15,12)(9,10)(19,20)$, $(1,3,5,8,10,12,14,16,18,19)(2,4,6,7,9,11,13,15,17,20)$ |
|
Low degree resolvents
$\card{(G/N)}$ Galois groups for stem field(s) $2$: $C_2$ x 3 $4$: $C_4$ x 2, $C_2^2$ $8$: $C_4\times C_2$ $20$: $F_5$ Resolvents shown for degrees $\leq 47$
Subfields
Degree 2: $C_2$ x 3
Degree 4: $C_2^2$
Degree 5: $F_5$
Degree 10: $F_5$, $F_{5}\times C_2$ x 2
Low degree siblings
10T5 x 2, 20T9, 40T14Siblings are shown with degree $\leq 47$
A number field with this Galois group has no arithmetically equivalent fields.
Conjugacy classes
Label | Cycle Type | Size | Order | Index | Representative |
1A | $1^{20}$ | $1$ | $1$ | $0$ | $()$ |
2A | $2^{10}$ | $1$ | $2$ | $10$ | $( 1,12)( 2,11)( 3,14)( 4,13)( 5,16)( 6,15)( 7,17)( 8,18)( 9,20)(10,19)$ |
2B | $2^{10}$ | $5$ | $2$ | $10$ | $( 1, 3)( 2, 4)( 5,19)( 6,20)( 7,17)( 8,18)( 9,15)(10,16)(11,13)(12,14)$ |
2C | $2^{8},1^{4}$ | $5$ | $2$ | $8$ | $( 1,18)( 2,17)( 3,16)( 4,15)( 5,14)( 6,13)( 7,11)( 8,12)$ |
4A1 | $4^{4},2^{2}$ | $5$ | $4$ | $14$ | $( 1, 6,18,13)( 2, 5,17,14)( 3,11,16, 7)( 4,12,15, 8)( 9,10)(19,20)$ |
4A-1 | $4^{4},2^{2}$ | $5$ | $4$ | $14$ | $( 1,13,18, 6)( 2,14,17, 5)( 3, 7,16,11)( 4, 8,15,12)( 9,10)(19,20)$ |
4B1 | $4^{4},2^{2}$ | $5$ | $4$ | $14$ | $( 1,11)( 2,12)( 3,17,19, 6)( 4,18,20, 5)( 7,10,15,14)( 8, 9,16,13)$ |
4B-1 | $4^{4},2^{2}$ | $5$ | $4$ | $14$ | $( 1,20, 5, 7)( 2,19, 6, 8)( 3,13)( 4,14)( 9,16,17,12)(10,15,18,11)$ |
5A | $5^{4}$ | $4$ | $5$ | $16$ | $( 1,14, 5,18,10)( 2,13, 6,17, 9)( 3,16, 8,19,12)( 4,15, 7,20,11)$ |
10A | $10^{2}$ | $4$ | $10$ | $18$ | $( 1, 8,14,19, 5,12,18, 3,10,16)( 2, 7,13,20, 6,11,17, 4, 9,15)$ |
Malle's constant $a(G)$: $1/8$
Character table
1A | 2A | 2B | 2C | 4A1 | 4A-1 | 4B1 | 4B-1 | 5A | 10A | ||
Size | 1 | 1 | 5 | 5 | 5 | 5 | 5 | 5 | 4 | 4 | |
2 P | 1A | 1A | 1A | 1A | 2C | 2C | 2C | 2C | 5A | 5A | |
5 P | 1A | 2A | 2B | 2C | 4A1 | 4A-1 | 4B1 | 4B-1 | 1A | 2A | |
Type | |||||||||||
40.12.1a | R | ||||||||||
40.12.1b | R | ||||||||||
40.12.1c | R | ||||||||||
40.12.1d | R | ||||||||||
40.12.1e1 | C | ||||||||||
40.12.1e2 | C | ||||||||||
40.12.1f1 | C | ||||||||||
40.12.1f2 | C | ||||||||||
40.12.4a | R | ||||||||||
40.12.4b | R |
Regular extensions
Data not computed