Learn more about

Further refine search

Results (displaying matches 1-50 of 84) Next

Label Polynomial Discriminant Galois group Class group
20.0.9942542280506065456521.1 x20 - 5x19 + 15x18 - 29x17 + 47x16 - 57x15 + 74x14 - 73x13 + 100x12 - 95x11 + 149x10 - 136x9 + 188x8 - 136x7 + 149x6 - 80x5 + 69x4 - 24x3 + 16x2 - 3x + 1 \( 3^{10}\cdot 17^{14} \) $C_2\times F_5$ (as 20T13) Trivial
20.0.154968195600000000000000.1 x20 - 5x18 + 18x16 - 42x14 + 105x12 - 189x10 + 252x8 - 228x6 + 120x4 - 32x2 + 4 \( 2^{16}\cdot 3^{18}\cdot 5^{14} \) $C_2\times F_5$ (as 20T13) Trivial
20.0.640000000000000000000000.1 x20 - 5x18 + 15x16 - 10x14 - 75x12 + 157x10 - 75x8 - 10x6 + 15x4 - 5x2 + 1 \( 2^{28}\cdot 5^{22} \) $C_2\times F_5$ (as 20T13) Trivial
20.4.2560000000000000000000000.1 x20 - 22x15 - 127x10 - 22x5 + 1 \( 2^{30}\cdot 5^{22} \) $C_2\times F_5$ (as 20T13) Trivial (GRH)
20.4.6871947673600000000000000.1 x20 - 12x18 - 4x17 + 57x16 + 32x15 - 128x14 - 104x13 + 137x12 + 128x11 - 8x10 - 60x9 - 93x8 + 44x6 - 24x5 - 37x4 - 16x3 - 8x2 - 4x - 1 \( 2^{50}\cdot 5^{14} \) $C_2\times F_5$ (as 20T13) Trivial
20.0.9226406250000000000000000.1 x20 - 5x19 + 10x18 - 15x17 + 30x16 - 53x15 + 50x14 - 15x13 + 45x12 - 200x11 + 308x10 - 200x9 + 45x8 - 15x7 + 50x6 - 53x5 + 30x4 - 15x3 + 10x2 - 5x + 1 \( 2^{16}\cdot 3^{10}\cdot 5^{22} \) $C_2\times F_5$ (as 20T13) Trivial
20.0.655360000000000000000000000.1 x20 + 246x10 + 4 \( 2^{38}\cdot 5^{22} \) $C_2\times F_5$ (as 20T13) Trivial (GRH)
20.4.655360000000000000000000000.3 x20 - 246x10 + 4 \( 2^{38}\cdot 5^{22} \) $C_2\times F_5$ (as 20T13) Trivial (GRH)
20.4.37791360000000000000000000000.1 x20 - 55x16 - 8x15 - 520x13 + 70x12 - 80x11 - 1432x10 + 800x9 - 590x8 + 120x7 + 2300x6 - 928x5 + 225x4 + 280x3 - 1260x2 + 1080x - 239 \( 2^{28}\cdot 3^{10}\cdot 5^{22} \) $C_2\times F_5$ (as 20T13) Trivial (GRH)
20.0.44136757656250000000000000000.1 x20 - 10x19 + 55x18 - 210x17 + 595x16 - 1250x15 + 1740x14 - 510x13 - 5435x12 + 19260x11 - 40229x10 + 57780x9 - 48915x8 - 13770x7 + 140940x6 - 303750x5 + 433755x4 - 459270x3 + 360855x2 - 196830x + 59049 \( 2^{16}\cdot 5^{22}\cdot 7^{10} \) $C_2\times F_5$ (as 20T13) Trivial (GRH)
20.0.44136757656250000000000000000.2 x20 + 25x18 + 255x16 - 4x15 + 1340x14 + 10x13 + 4035x12 + 630x11 + 7257x10 + 2670x9 + 7205x8 + 3050x7 + 2880x6 - 86x5 - 765x4 - 570x3 - 35x2 + 400x + 151 \( 2^{16}\cdot 5^{22}\cdot 7^{10} \) $C_2\times F_5$ (as 20T13) Trivial (GRH)
20.4.72220413630873600000000000000.1 x20 - 6x18 + 8x16 - 24x14 + 52x12 + 324x10 - 392x8 - 1224x6 + 752x4 - 96x2 + 4 \( 2^{38}\cdot 3^{16}\cdot 5^{14} \) $C_2\times F_5$ (as 20T13) Trivial (GRH)
20.0.1446978531682831584079714975744.1 x20 - 8x19 + 36x18 - 128x17 + 346x16 - 686x15 + 992x14 - 774x13 - 612x12 + 2794x11 - 3735x10 + 1380x9 + 2754x8 - 4158x7 + 1168x6 + 2560x5 - 1014x4 - 1902x3 + 542x2 + 624x + 153 \( 2^{20}\cdot 53^{14} \) $C_2\times F_5$ (as 20T13) $[3]$ (GRH)
20.0.4052722593906250000000000000000.1 x20 + 35x18 + 510x16 - 4x15 + 3980x14 + 30x13 + 18305x12 + 1410x11 + 51049x10 + 8340x9 + 82300x8 + 13030x7 + 63020x6 - 7630x5 + 3000x4 - 19480x3 - 8980x2 + 2100x + 3980 \( 2^{16}\cdot 5^{22}\cdot 11^{10} \) $C_2\times F_5$ (as 20T13) $[2]$ (GRH)
20.4.21540389351406250000000000000000.1 x20 - 25x18 + 330x16 - 4x15 - 2860x14 - 90x13 + 17285x12 + 930x11 - 78143x10 - 6180x9 + 279280x8 + 26950x7 - 779920x6 - 32686x5 + 1560060x4 - 130120x3 - 1849060x2 + 316500x + 922676 \( 2^{16}\cdot 5^{22}\cdot 13^{10} \) $C_2\times F_5$ (as 20T13) Trivial (GRH)
20.20.24371997355510472326748292775936.1 x20 - 10x19 + 17x18 + 122x17 - 413x16 - 412x15 + 2668x14 - 6x13 - 8161x12 + 2452x11 + 13443x10 - 4478x9 - 12172x8 + 2810x7 + 5842x6 - 450x5 - 1317x4 - 84x3 + 104x2 + 20x + 1 \( 2^{30}\cdot 7^{8}\cdot 13^{14} \) $C_2\times F_5$ (as 20T13) Trivial (GRH)
20.0.38698352640000000000000000000000.1 x20 - 10x19 + 35x18 - 30x17 - 105x16 + 228x15 + 90x14 - 540x13 + 45x12 + 770x11 + 841x10 - 5630x9 + 65655x8 - 232740x7 + 714510x6 - 1347420x5 + 1836975x4 - 1691250x3 + 1027925x2 - 369350x + 295975 \( 2^{38}\cdot 3^{10}\cdot 5^{22} \) $C_2\times F_5$ (as 20T13) $[4]$ (GRH)
20.4.38698352640000000000000000000000.1 x20 - 10x19 + 35x18 - 30x17 - 105x16 + 228x15 + 90x14 - 540x13 + 45x12 + 770x11 - 1103x10 + 4090x9 - 65565x8 + 233820x7 - 714330x6 + 1346964x5 - 1837185x4 + 1691310x3 - 1027855x2 + 369370x + 176419 \( 2^{38}\cdot 3^{10}\cdot 5^{22} \) $C_2\times F_5$ (as 20T13) Trivial (GRH)
20.20.180784159360000000000000000000000.1 x20 - 40x18 - 30x17 + 570x16 + 660x15 - 3690x14 - 4780x13 + 12770x12 + 16200x11 - 25376x10 - 28100x9 + 29300x8 + 24400x7 - 19000x6 - 9120x5 + 6280x4 + 760x3 - 780x2 + 80x + 4 \( 2^{28}\cdot 5^{22}\cdot 7^{10} \) $C_2\times F_5$ (as 20T13) Trivial (GRH)
20.4.180784159360000000000000000000000.3 x20 - 115x16 - 8x15 - 2960x13 + 830x12 - 240x11 - 25920x10 + 16200x9 - 4190x8 + 280x7 + 192780x6 - 9656x5 + 1225x4 + 670680x3 - 941220x2 + 246960x + 219389 \( 2^{28}\cdot 5^{22}\cdot 7^{10} \) $C_2\times F_5$ (as 20T13) Trivial (GRH)
20.4.314999046945156250000000000000000.1 x20 - 35x18 + 615x16 - 4x15 - 6940x14 - 110x13 + 54495x12 + 1830x11 - 313455x10 - 14970x9 + 1364105x8 + 71690x7 - 4465140x6 - 91742x5 + 10342455x4 - 542730x3 - 14624315x2 + 1555120x + 9130279 \( 2^{16}\cdot 5^{22}\cdot 17^{10} \) $C_2\times F_5$ (as 20T13) Trivial (GRH)
20.0.957979102781406250000000000000000.1 x20 + 55x18 + 1290x16 - 4x15 + 16820x14 + 70x13 + 134325x12 + 3810x11 + 681153x10 + 36060x9 + 2183600x8 + 96710x7 + 4242720x6 - 105998x5 + 4621740x4 - 588360x3 + 2809180x2 - 205100x + 1267924 \( 2^{16}\cdot 5^{22}\cdot 19^{10} \) $C_2\times F_5$ (as 20T13) $[4]$ (GRH)
20.4.2606231402843906250000000000000000.1 x20 - 45x18 + 990x16 - 4x15 - 13780x14 - 130x13 + 132625x12 + 3010x11 - 924247x10 - 29740x9 + 4772700x8 + 158310x7 - 18138180x6 - 205998x5 + 48188040x4 - 1739160x3 - 78750420x2 + 5650100x + 58105324 \( 2^{16}\cdot 3^{10}\cdot 5^{22}\cdot 7^{10} \) $C_2\times F_5$ (as 20T13) Trivial (GRH)
20.0.6472892377132656250000000000000000.1 x20 + 65x18 + 1815x16 - 4x15 + 28460x14 + 90x13 + 276395x12 + 5430x11 + 1727545x10 + 61230x9 + 6965605x8 + 202090x7 + 17624360x6 - 246742x5 + 26512155x4 - 1889530x3 + 22642685x2 - 1174080x + 10740479 \( 2^{16}\cdot 5^{22}\cdot 23^{10} \) $C_2\times F_5$ (as 20T13) $[3]$ (GRH)
20.4.16599951744640000000000000000000000.1 x20 - 175x16 - 8x15 - 8280x13 + 2390x12 - 400x11 - 140648x10 + 70000x9 - 10990x8 + 440x7 + 2253500x6 + 5616x5 + 3025x4 + 29375000x3 - 25437500x2 + 3993000x + 38901449 \( 2^{28}\cdot 5^{22}\cdot 11^{10} \) $C_2\times F_5$ (as 20T13) Trivial (GRH)
20.0.28211099074560000000000000000000000.1 x20 + 30x18 + 200x16 + 210x14 - 1340x12 + 84x10 + 3160x8 + 1560x6 + 3860x4 + 1560x2 + 1444 \( 2^{38}\cdot 3^{16}\cdot 5^{22} \) $C_2\times F_5$ (as 20T13) Trivial (GRH)
20.4.65735505203156406250000000000000000.2 x20 - 65x18 + 2010x16 - 4x15 - 38620x14 - 170x13 + 507405x12 + 6210x11 - 4761951x10 - 83460x9 + 32453600x8 + 545030x7 - 159124680x6 - 704030x5 + 536314500x4 - 10809480x3 - 1110770180x2 + 42769300x + 1055258980 \( 2^{16}\cdot 5^{22}\cdot 29^{10} \) $C_2\times F_5$ (as 20T13) n/a
20.0.88229434783360000000000000000000000.1 x20 + 185x16 - 8x15 - 360x13 + 5030x12 + 560x11 - 60920x10 - 156800x9 - 18190x8 - 520x7 + 5616380x6 - 37056x5 + 4225x4 + 108237080x3 + 107996980x2 + 12918360x + 1130272289 \( 2^{28}\cdot 5^{22}\cdot 13^{10} \) $C_2\times F_5$ (as 20T13) $[8]$ (GRH)
20.0.128066919840750156250000000000000000.1 x20 + 85x18 + 3135x16 - 4x15 + 65780x14 + 130x13 + 867255x12 + 9510x11 + 7484049x10 + 141990x9 + 42616025x8 + 651530x7 + 157291620x6 - 898430x5 + 359925375x4 - 11630730x3 + 471698245x2 - 14132000x + 292051855 \( 2^{16}\cdot 5^{22}\cdot 31^{10} \) $C_2\times F_5$ (as 20T13) $[30]$ (GRH)
20.0.185122979184640000000000000000000000.1 x20 - 10x19 + 35x18 - 30x17 - 105x16 + 228x15 + 90x14 - 540x13 + 45x12 + 770x11 + 67097x10 - 336910x9 + 4537935x8 - 16134180x7 + 49412670x6 - 93178236x5 + 127060815x4 - 116976690x3 + 71093645x2 - 25546630x + 1134035519 \( 2^{38}\cdot 5^{22}\cdot 7^{10} \) $C_2\times F_5$ (as 20T13) n/a
20.4.185122979184640000000000000000000000.1 x20 - 10x19 + 35x18 - 30x17 - 105x16 + 228x15 + 90x14 - 540x13 + 45x12 + 770x11 - 67359x10 + 335370x9 - 4537845x8 + 16135260x7 - 49412490x6 + 93177780x5 - 127061025x4 + 116976750x3 - 71093575x2 + 25546650x + 1125766475 \( 2^{38}\cdot 5^{22}\cdot 7^{10} \) $C_2\times F_5$ (as 20T13) Trivial (GRH)
20.4.239309216447570156250000000000000000.1 x20 - 75x18 + 2655x16 - 4x15 - 58060x14 - 190x13 + 864535x12 + 8230x11 - 9154543x10 - 125530x9 + 69990105x8 + 899850x7 - 382460220x6 - 1148286x5 + 1428543135x4 - 22732170x3 - 3271307835x2 + 97709600x + 3444019951 \( 2^{16}\cdot 3^{10}\cdot 5^{22}\cdot 11^{10} \) $C_2\times F_5$ (as 20T13) Trivial (GRH)
20.4.751341308190288906250000000000000000.1 x20 - 85x18 + 3390x16 - 4x15 - 83140x14 - 210x13 + 1383545x12 + 10530x11 - 16314455x10 - 179820x9 + 138293980x8 + 1405990x7 - 833762140x6 - 1767742x5 + 3420606480x4 - 44093080x3 - 8583237940x2 + 204431220x + 9909563804 \( 2^{16}\cdot 5^{22}\cdot 37^{10} \) $C_2\times F_5$ (as 20T13) n/a
20.0.1271938450811187656250000000000000000.2 x20 + 105x18 + 4815x16 - 4x15 + 126620x14 + 170x13 + 2110675x12 + 14710x11 + 23259353x10 + 273710x9 + 171185925x8 + 1618410x7 + 828979920x6 - 2398998x5 + 2529545715x4 - 46929210x3 + 4442944605x2 - 86405200x + 3540446599 \( 2^{16}\cdot 3^{10}\cdot 5^{22}\cdot 13^{10} \) $C_2\times F_5$ (as 20T13) n/a
20.0.1290236096287360000000000000000000000.1 x20 + 245x16 - 8x15 + 2080x13 + 8270x12 + 720x11 - 170832x10 - 340200x9 - 30590x8 - 680x7 + 25490700x6 - 383528x5 + 7225x4 + 999109080x3 + 693760140x2 + 63672480x + 13948557461 \( 2^{28}\cdot 5^{22}\cdot 17^{10} \) $C_2\times F_5$ (as 20T13) n/a
20.4.2097290517211312656250000000000000000.1 x20 - 95x18 + 4215x16 - 4x15 - 114580x14 - 230x13 + 2107275x12 + 13110x11 - 27381447x10 - 247890x9 + 254889125x8 + 2101610x7 - 1681061880x6 - 2598998x5 + 7517568315x4 - 80130810x3 - 20515534595x2 + 398435200x + 25759546399 \( 2^{16}\cdot 5^{22}\cdot 41^{10} \) $C_2\times F_5$ (as 20T13) n/a
20.0.3376794111450663906250000000000000000.1 x20 + 115x18 + 5790x16 - 4x15 + 167660x14 + 190x13 + 3087345x12 + 17730x11 + 37717545x10 + 362580x9 + 309021980x8 + 2386790x7 + 1673896860x6 - 3637742x5 + 5741435880x4 - 84886680x3 + 11358886060x2 - 183407180x + 10110844204 \( 2^{16}\cdot 5^{22}\cdot 43^{10} \) $C_2\times F_5$ (as 20T13) n/a
20.4.3923882404992640000000000000000000000.1 x20 - 295x16 - 8x15 - 31400x13 + 7910x12 - 720x11 - 1232184x10 + 388800x9 - 34190x8 + 760x7 + 50393340x6 + 833920x5 + 9025x4 + 2529659160x3 - 1269028620x2 + 111115800x + 13944661505 \( 2^{28}\cdot 5^{22}\cdot 19^{10} \) $C_2\times F_5$ (as 20T13) n/a
20.0.8218614411848445156250000000000000000.1 x20 + 125x18 + 6855x16 - 4x15 + 216740x14 + 210x13 + 4369535x12 + 21030x11 + 58615057x10 + 468870x9 + 529079305x8 + 3402250x7 + 3169335980x6 - 5313886x5 + 12067309335x4 - 145608970x3 + 26550173765x2 - 361510800x + 26151329351 \( 2^{16}\cdot 5^{22}\cdot 47^{10} \) $C_2\times F_5$ (as 20T13) n/a
20.0.10675123826048640000000000000000000000.3 x20 + 305x16 - 8x15 + 7400x13 + 12310x12 + 880x11 - 351784x10 - 629200x9 - 46190x8 - 840x7 + 86410940x6 - 1433680x5 + 11025x4 + 5598132760x3 + 3006968580x2 + 224116200x + 103753782505 \( 2^{28}\cdot 3^{10}\cdot 5^{22}\cdot 7^{10} \) $C_2\times F_5$ (as 20T13) n/a
20.0.16998350586511360000000000000000000000.1 x20 - 10x19 + 35x18 - 30x17 - 105x16 + 228x15 + 90x14 - 540x13 + 45x12 + 770x11 + 644073x10 - 3221790x9 + 43483815x8 - 154608420x7 + 473490030x6 - 892866972x5 + 1217545455x4 - 1120914930x3 + 681245765x2 - 244797510x + 103789316951 \( 2^{38}\cdot 5^{22}\cdot 11^{10} \) $C_2\times F_5$ (as 20T13) n/a
20.4.16998350586511360000000000000000000000.1 x20 - 10x19 + 35x18 - 30x17 - 105x16 + 228x15 + 90x14 - 540x13 + 45x12 + 770x11 - 644335x10 + 3220250x9 - 43483725x8 + 154609500x7 - 473489850x6 + 892866516x5 - 1217545665x4 + 1120914990x3 - 681245695x2 + 244797530x + 103710079859 \( 2^{38}\cdot 5^{22}\cdot 11^{10} \) $C_2\times F_5$ (as 20T13) n/a
20.0.18600378723064531406250000000000000000.2 x20 + 135x18 + 8010x16 - 4x15 + 274580x14 + 230x13 + 6015205x12 + 24610x11 + 87898049x10 + 594140x9 + 866646000x8 + 4713030x7 + 5688096720x6 - 7525230x5 + 23801041500x4 - 238929480x3 + 57642488220x2 - 670653100x + 62307524980 \( 2^{16}\cdot 3^{10}\cdot 5^{22}\cdot 17^{10} \) $C_2\times F_5$ (as 20T13) n/a
20.4.26512967176735360000000000000000000000.1 x20 - 355x16 - 8x15 - 51120x13 + 11870x12 - 880x11 - 2712032x10 + 701800x9 - 50590x8 + 920x7 + 153173900x6 + 2493672x5 + 13225x4 + 11834027480x3 - 4923182660x2 + 353329680x + 103743262061 \( 2^{28}\cdot 5^{22}\cdot 23^{10} \) $C_2\times F_5$ (as 20T13) n/a
20.4.27326167244611413906250000000000000000.1 x20 - 125x18 + 7230x16 - 4x15 - 254260x14 - 290x13 + 6010785x12 + 22530x11 - 99761943x10 - 550380x9 + 1177877180x8 + 5771750x7 - 9777028020x6 - 6751886x5 + 54615375960x4 - 360381720x3 - 185154483860x2 + 2153019700x + 288273254476 \( 2^{16}\cdot 5^{22}\cdot 53^{10} \) $C_2\times F_5$ (as 20T13) n/a
20.4.56567708040139257656250000000000000000.1 x20 - 135x18 + 8415x16 - 4x15 - 318340x14 - 310x13 + 8082595x12 + 26230x11 - 143852455x10 - 689170x9 + 1818277605x8 + 7693290x7 - 16128380640x6 - 8822742x5 + 96104734755x4 - 552975930x3 - 347034273315x2 + 3487818320x + 575052033079 \( 2^{16}\cdot 3^{10}\cdot 5^{22}\cdot 19^{10} \) $C_2\times F_5$ (as 20T13) n/a
20.0.79861992703225218906250000000000000000.1 x20 + 155x18 + 10590x16 - 4x15 + 419420x14 + 270x13 + 10654025x12 + 32610x11 + 181224553x10 + 907860x9 + 2088869500x8 + 8435110x7 + 16102101620x6 - 14003998x5 + 79491889440x4 - 577697560x3 + 227754848780x2 - 1998540300x + 290388198524 \( 2^{16}\cdot 5^{22}\cdot 59^{10} \) $C_2\times F_5$ (as 20T13) n/a
20.0.90346941218160640000000000000000000000.1 x20 - 10x19 + 35x18 - 30x17 - 105x16 + 228x15 + 90x14 - 540x13 + 45x12 + 770x11 + 1485041x10 - 7426630x9 + 100249155x8 - 356440740x7 + 1091601510x6 - 2058448620x5 + 2806974975x4 - 2584199250x3 + 1570569425x2 - 564365350x + 551525305475 \( 2^{38}\cdot 5^{22}\cdot 13^{10} \) $C_2\times F_5$ (as 20T13) n/a
20.4.90346941218160640000000000000000000000.1 x20 - 10x19 + 35x18 - 30x17 - 105x16 + 228x15 + 90x14 - 540x13 + 45x12 + 770x11 - 1485303x10 + 7425090x9 - 100249065x8 + 356441820x7 - 1091601330x6 + 2058448164x5 - 2806975185x4 + 2584199310x3 - 1570569355x2 + 564365370x + 551342629319 \( 2^{38}\cdot 5^{22}\cdot 13^{10} \) $C_2\times F_5$ (as 20T13) n/a
20.4.111459829947325406406250000000000000000.1 x20 - 145x18 + 9690x16 - 4x15 - 392380x14 - 330x13 + 10648925x12 + 30210x11 - 202311647x10 - 849540x9 + 2725736800x8 + 10059910x7 - 25731161080x6 - 11303998x5 + 162923648340x4 - 824749960x3 - 624326270020x2 + 5476545300x + 1096989910724 \( 2^{16}\cdot 5^{22}\cdot 61^{10} \) $C_2\times F_5$ (as 20T13) n/a
Next

Download all search results for