sage:E = EllipticCurve("bc1")
E.isogeny_class()
sage:E.rank()
The elliptic curve 91600.bc1 has
rank \(0\).
| |
| Bad L-factors: |
| Prime |
L-Factor |
| \(2\) | \(1\) |
| \(5\) | \(1\) |
| \(229\) | \(1 + T\) |
|
| |
| Good L-factors: |
| Prime |
L-Factor |
Isogeny Class over \(\mathbb{F}_p\) |
| \(3\) |
\( 1 - 3 T + 3 T^{2}\) |
1.3.ad
|
| \(7\) |
\( 1 + 4 T + 7 T^{2}\) |
1.7.e
|
| \(11\) |
\( 1 + 11 T^{2}\) |
1.11.a
|
| \(13\) |
\( 1 - T + 13 T^{2}\) |
1.13.ab
|
| \(17\) |
\( 1 - 4 T + 17 T^{2}\) |
1.17.ae
|
| \(19\) |
\( 1 + 4 T + 19 T^{2}\) |
1.19.e
|
| \(23\) |
\( 1 - 6 T + 23 T^{2}\) |
1.23.ag
|
| \(29\) |
\( 1 - 8 T + 29 T^{2}\) |
1.29.ai
|
| $\cdots$ | $\cdots$ | $\cdots$ |
|
| |
| See L-function page for more information |
The elliptic curves in class 91600.bc do not have complex multiplication.
sage:E.q_eigenform(10)
Elliptic curves in class 91600.bc
sage:E.isogeny_class().curves