Label |
Cremona label |
Class |
Cremona class |
Class size |
Class degree |
Conductor |
Discriminant |
Rank |
Torsion |
$\textrm{End}^0(E_{\overline\Q})$ |
CM |
Sato-Tate |
Semistable |
Potentially good |
Nonmax $\ell$ |
$\ell$-adic images |
mod-$\ell$ images |
Adelic level |
Adelic index |
Adelic genus |
Regulator |
$Ш_{\textrm{an}}$ |
Ш primes |
Integral points |
Modular degree |
Faltings height |
j-invariant |
$abc$ quality |
Szpiro ratio |
Weierstrass coefficients |
Weierstrass equation |
mod-$m$ images |
MW-generators |
46410.a1 |
46410b4 |
46410.a |
46410b |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{3} \cdot 3^{2} \cdot 5 \cdot 7^{8} \cdot 13^{4} \cdot 17 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.7 |
2B |
$8840$ |
$48$ |
$0$ |
$7.899713931$ |
$1$ |
|
$8$ |
$294912$ |
$1.607002$ |
$7674388308884766169/1007648705929320$ |
$0.92809$ |
$4.04684$ |
$[1, 1, 0, -41093, -2836347]$ |
\(y^2+xy=x^3+x^2-41093x-2836347\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 104.24.0.?, 340.12.0.?, $\ldots$ |
$[(451, 8178), (231, 138)]$ |
46410.a2 |
46410b2 |
46410.a |
46410b |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{6} \cdot 3^{4} \cdot 5^{2} \cdot 7^{4} \cdot 13^{2} \cdot 17^{2} \) |
$2$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.1 |
2Cs |
$8840$ |
$48$ |
$0$ |
$1.974928482$ |
$1$ |
|
$30$ |
$147456$ |
$1.260427$ |
$127787213284071769/15197834433600$ |
$0.90645$ |
$3.66572$ |
$[1, 1, 0, -10493, 364413]$ |
\(y^2+xy=x^3+x^2-10493x+364413\) |
2.6.0.a.1, 8.12.0-2.a.1.1, 52.12.0-2.a.1.1, 104.24.0.?, 340.12.0.?, $\ldots$ |
$[(29, 278), (-7, 665)]$ |
46410.a3 |
46410b1 |
46410.a |
46410b |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{12} \cdot 3^{2} \cdot 5 \cdot 7^{2} \cdot 13 \cdot 17 \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.12 |
2B |
$8840$ |
$48$ |
$0$ |
$1.974928482$ |
$1$ |
|
$15$ |
$73728$ |
$0.913855$ |
$116449478628435289/1996001280$ |
$0.90353$ |
$3.65707$ |
$[1, 1, 0, -10173, 390717]$ |
\(y^2+xy=x^3+x^2-10173x+390717\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 52.12.0-4.c.1.2, 104.24.0.?, $\ldots$ |
$[(-6, 675), (59, -14)]$ |
46410.a4 |
46410b3 |
46410.a |
46410b |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{3} \cdot 3^{8} \cdot 5^{4} \cdot 7^{2} \cdot 13 \cdot 17^{4} \) |
$2$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.8 |
2B |
$8840$ |
$48$ |
$0$ |
$1.974928482$ |
$1$ |
|
$14$ |
$294912$ |
$1.607002$ |
$372239584720800551/1745320379985000$ |
$0.93639$ |
$3.94766$ |
$[1, 1, 0, 14987, 1888117]$ |
\(y^2+xy=x^3+x^2+14987x+1888117\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 52.12.0-4.c.1.1, 104.24.0.?, $\ldots$ |
$[(21, 1477), (97, 2017)]$ |
46410.b1 |
46410c4 |
46410.b |
46410c |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{3} \cdot 3^{7} \cdot 5 \cdot 7^{4} \cdot 13^{4} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$185640$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$688128$ |
$2.169579$ |
$15231025329261085948969/501037266310733880$ |
$0.95865$ |
$4.75350$ |
$[1, 1, 0, -516418, 138505948]$ |
\(y^2+xy=x^3+x^2-516418x+138505948\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0-4.c.1.2, 120.24.0.?, $\ldots$ |
$[]$ |
46410.b2 |
46410c2 |
46410.b |
46410c |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{6} \cdot 3^{14} \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.6.0.1 |
2Cs |
$185640$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$344064$ |
$1.823006$ |
$54564527576482291369/18314631132033600$ |
$0.94319$ |
$4.22939$ |
$[1, 1, 0, -79018, -5573612]$ |
\(y^2+xy=x^3+x^2-79018x-5573612\) |
2.6.0.a.1, 12.12.0-2.a.1.1, 40.12.0-2.a.1.1, 120.24.0.?, 6188.12.0.?, $\ldots$ |
$[]$ |
46410.b3 |
46410c1 |
46410.b |
46410c |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{12} \cdot 3^{7} \cdot 5^{4} \cdot 7 \cdot 13 \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$185640$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$1$ |
$172032$ |
$1.476433$ |
$39613077168432499369/8661219840000$ |
$0.93332$ |
$4.19959$ |
$[1, 1, 0, -71018, -7312812]$ |
\(y^2+xy=x^3+x^2-71018x-7312812\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0-4.c.1.4, 120.24.0.?, $\ldots$ |
$[]$ |
46410.b4 |
46410c3 |
46410.b |
46410c |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{3} \cdot 3^{28} \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$185640$ |
$48$ |
$0$ |
$1$ |
$16$ |
$2$ |
$0$ |
$688128$ |
$2.169579$ |
$1352279296967264534231/1415615917112986680$ |
$1.00944$ |
$4.52814$ |
$[1, 1, 0, 230382, -38184372]$ |
\(y^2+xy=x^3+x^2+230382x-38184372\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0-4.c.1.1, 120.24.0.?, $\ldots$ |
$[]$ |
46410.c1 |
46410d4 |
46410.c |
46410d |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{2} \cdot 3 \cdot 5^{4} \cdot 7^{4} \cdot 13 \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$10920$ |
$48$ |
$0$ |
$1.028728940$ |
$1$ |
|
$6$ |
$294912$ |
$1.560623$ |
$1537890797739931486489/67654177500$ |
$0.94913$ |
$4.54011$ |
$[1, 1, 0, -240473, 45288633]$ |
\(y^2+xy=x^3+x^2-240473x+45288633\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 52.12.0-4.c.1.2, 156.24.0.?, $\ldots$ |
$[(283, -133)]$ |
46410.c2 |
46410d2 |
46410.c |
46410d |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.6.0.1 |
2Cs |
$5460$ |
$48$ |
$0$ |
$0.514364470$ |
$1$ |
|
$16$ |
$147456$ |
$1.214050$ |
$377257581238546009/2489894643600$ |
$0.91017$ |
$3.76647$ |
$[1, 1, 0, -15053, 700557]$ |
\(y^2+xy=x^3+x^2-15053x+700557\) |
2.6.0.a.1, 12.12.0-2.a.1.1, 52.12.0-2.a.1.1, 140.12.0.?, 156.24.0.?, $\ldots$ |
$[(79, 71)]$ |
46410.c3 |
46410d3 |
46410.c |
46410d |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{2} \cdot 3^{4} \cdot 5 \cdot 7 \cdot 13 \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$10920$ |
$48$ |
$0$ |
$1.028728940$ |
$1$ |
|
$6$ |
$294912$ |
$1.560623$ |
$-23337017143411609/1028366161952220$ |
$0.94832$ |
$3.91191$ |
$[1, 1, 0, -5953, 1550497]$ |
\(y^2+xy=x^3+x^2-5953x+1550497\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 52.12.0-4.c.1.1, 140.12.0.?, $\ldots$ |
$[(-61, 1331)]$ |
46410.c4 |
46410d1 |
46410.c |
46410d |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3 \cdot 5 \cdot 7 \cdot 13^{4} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$10920$ |
$48$ |
$0$ |
$1.028728940$ |
$1$ |
|
$7$ |
$73728$ |
$0.867476$ |
$398834531805529/221870987520$ |
$0.90531$ |
$3.12878$ |
$[1, 1, 0, -1533, -5187]$ |
\(y^2+xy=x^3+x^2-1533x-5187\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 104.12.0.?, 140.12.0.?, $\ldots$ |
$[(-22, 147)]$ |
46410.d1 |
46410a4 |
46410.d |
46410a |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{2} \cdot 3^{16} \cdot 5^{12} \cdot 7^{5} \cdot 13 \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$3640$ |
$48$ |
$0$ |
$134.1067798$ |
$1$ |
|
$0$ |
$253624320$ |
$5.023987$ |
$6525213578865970265696405437575208534969/767130688571676495117187500$ |
$1.05203$ |
$8.53180$ |
$[1, 1, 0, -389305321043, -93494136872571087]$ |
\(y^2+xy=x^3+x^2-389305321043x-93494136872571087\) |
2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.2, 40.12.0-4.c.1.5, 52.12.0-4.c.1.1, $\ldots$ |
$[(1508601471872507885983985627371936709757566823225800653018719/1366673739905009915296034899, 879459458869071935918731825228173637973833771473035324607973288740209267480667812717964372/1366673739905009915296034899)]$ |
46410.d2 |
46410a2 |
46410.d |
46410a |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{8} \cdot 5^{6} \cdot 7^{10} \cdot 13^{2} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.6.0.1 |
2Cs |
$1820$ |
$48$ |
$0$ |
$67.05338990$ |
$1$ |
|
$2$ |
$126812160$ |
$4.677414$ |
$1593463037319346477727119157097168889/546221162511858816329870250000$ |
$1.03925$ |
$7.75774$ |
$[1, 1, 0, -24333584823, -1460601042571323]$ |
\(y^2+xy=x^3+x^2-24333584823x-1460601042571323\) |
2.6.0.a.1, 20.12.0-2.a.1.1, 28.12.0-2.a.1.1, 52.12.0-2.a.1.1, 140.24.0.?, $\ldots$ |
$[(-4081259501510322207771879748947/6744879943573, 207690865303260286180352679243344876030058792/6744879943573)]$ |
46410.d3 |
46410a3 |
46410.d |
46410a |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{2} \cdot 3^{4} \cdot 5^{3} \cdot 7^{5} \cdot 13^{4} \cdot 17^{16} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$3640$ |
$48$ |
$0$ |
$134.1067798$ |
$1$ |
|
$0$ |
$253624320$ |
$5.023987$ |
$-1014009007595272988562623757184248889/946022301497270062664245652323500$ |
$1.04423$ |
$7.80503$ |
$[1, 1, 0, -20930167323, -1883681914046823]$ |
\(y^2+xy=x^3+x^2-20930167323x-1883681914046823\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 28.12.0-4.c.1.1, 70.6.0.a.1, $\ldots$ |
$[(15290300560336145784416667491093032534255737588366974525873/153071294353598674559152217, 1835905916689334865577826566575814517941349914356412103523088227129921753252822229004288/153071294353598674559152217)]$ |
46410.d4 |
46410a1 |
46410.d |
46410a |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3^{4} \cdot 5^{3} \cdot 7^{20} \cdot 13 \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$3640$ |
$48$ |
$0$ |
$33.52669495$ |
$1$ |
|
$1$ |
$63406080$ |
$4.330841$ |
$578157667940817624228325381788409/224561259415530338819315616000$ |
$1.03263$ |
$7.02052$ |
$[1, 1, 0, -1735564903, -15959344729547]$ |
\(y^2+xy=x^3+x^2-1735564903x-15959344729547\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 52.12.0-4.c.1.2, 56.12.0-4.c.1.5, $\ldots$ |
$[(-2933810903143538/313297, 93805596483445740048481/313297)]$ |
46410.e1 |
46410e1 |
46410.e |
46410e |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2 \cdot 3^{11} \cdot 5^{2} \cdot 7^{5} \cdot 13^{5} \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$37128$ |
$2$ |
$0$ |
$3.236349211$ |
$1$ |
|
$2$ |
$1108800$ |
$2.130753$ |
$-86759979851166011209/939636090468252450$ |
$0.96825$ |
$4.55001$ |
$[1, 1, 0, -92228, -47906022]$ |
\(y^2+xy=x^3+x^2-92228x-47906022\) |
37128.2.0.? |
$[(979, 27818)]$ |
46410.f1 |
46410l1 |
46410.f |
46410l |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2 \cdot 3^{3} \cdot 5^{9} \cdot 7^{4} \cdot 13 \cdot 17^{7} \) |
$0$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$26520$ |
$2$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$4088448$ |
$2.882626$ |
$-169203997709454503695857049/1350833308630558593750$ |
$0.98898$ |
$5.62172$ |
$[1, 1, 0, -11522913, -15163667757]$ |
\(y^2+xy=x^3+x^2-11522913x-15163667757\) |
26520.2.0.? |
$[]$ |
46410.g1 |
46410f4 |
46410.g |
46410f |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3 \cdot 5^{12} \cdot 7^{3} \cdot 13^{4} \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$14280$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$25952256$ |
$3.831905$ |
$1744596788171434949302427839201849/9588363813082031250000$ |
$1.02699$ |
$7.12330$ |
$[1, 1, 0, -2507978363, 48341976384717]$ |
\(y^2+xy=x^3+x^2-2507978363x+48341976384717\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 28.12.0-4.c.1.1, 42.6.0.a.1, $\ldots$ |
$[]$ |
46410.g2 |
46410f3 |
46410.g |
46410f |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{4} \cdot 5^{3} \cdot 7^{3} \cdot 13^{16} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$14280$ |
$48$ |
$0$ |
$1$ |
$4$ |
$2$ |
$0$ |
$25952256$ |
$3.831905$ |
$1101358349464662961278219354169/628567168199833707765102000$ |
$1.04416$ |
$6.43763$ |
$[1, 1, 0, -215146843, 142578285613]$ |
\(y^2+xy=x^3+x^2-215146843x+142578285613\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 28.12.0-4.c.1.2, 168.24.0.?, $\ldots$ |
$[]$ |
46410.g3 |
46410f2 |
46410.g |
46410f |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{8} \cdot 3^{2} \cdot 5^{6} \cdot 7^{6} \cdot 13^{8} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.6.0.1 |
2Cs |
$7140$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$12976128$ |
$3.485332$ |
$426646307804307769001905914169/998470877001641316000000$ |
$1.00929$ |
$6.34938$ |
$[1, 1, 0, -156836843, 754401791613]$ |
\(y^2+xy=x^3+x^2-156836843x+754401791613\) |
2.6.0.a.1, 12.12.0-2.a.1.1, 28.12.0-2.a.1.1, 84.24.0.?, 340.12.0.?, $\ldots$ |
$[]$ |
46410.g4 |
46410f1 |
46410.g |
46410f |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{16} \cdot 3 \cdot 5^{3} \cdot 7^{12} \cdot 13^{4} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$14280$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$6488064$ |
$3.138760$ |
$-26949791983733109138764089/165161952797784563712000$ |
$1.00394$ |
$5.67749$ |
$[1, 1, 0, -6246123, 20452740477]$ |
\(y^2+xy=x^3+x^2-6246123x+20452740477\) |
2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 56.12.0-4.c.1.5, 168.24.0.?, $\ldots$ |
$[]$ |
46410.h1 |
46410i4 |
46410.h |
46410i |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{9} \cdot 3 \cdot 5^{4} \cdot 7^{3} \cdot 13^{12} \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.7 |
2B |
$2184$ |
$48$ |
$0$ |
$5.953223749$ |
$1$ |
|
$2$ |
$185794560$ |
$4.782799$ |
$115811508824614211679593714547552169/53515175226614393876135522880000$ |
$1.04548$ |
$7.51375$ |
$[1, 1, 0, -10154908218, 176807644788372]$ |
\(y^2+xy=x^3+x^2-10154908218x+176807644788372\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 84.12.0.?, 104.24.0.?, $\ldots$ |
$[(12899, 6919291)]$ |
46410.h2 |
46410i2 |
46410.h |
46410i |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{18} \cdot 3^{2} \cdot 5^{8} \cdot 7^{6} \cdot 13^{6} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.1 |
2Cs |
$2184$ |
$48$ |
$0$ |
$2.976611874$ |
$1$ |
|
$8$ |
$92897280$ |
$4.436218$ |
$68121465154900977371934154073952169/43710573588218598297600000000$ |
$1.03381$ |
$7.46436$ |
$[1, 1, 0, -8508508218, 301913300148372]$ |
\(y^2+xy=x^3+x^2-8508508218x+301913300148372\) |
2.6.0.a.1, 8.12.0-2.a.1.1, 52.12.0-2.a.1.1, 84.12.0.?, 104.24.0.?, $\ldots$ |
$[(43524, 3725310)]$ |
46410.h3 |
46410i1 |
46410.h |
46410i |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{36} \cdot 3 \cdot 5^{4} \cdot 7^{3} \cdot 13^{3} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.12 |
2B |
$2184$ |
$48$ |
$0$ |
$5.953223749$ |
$1$ |
|
$3$ |
$46448640$ |
$4.089645$ |
$68089988046149164570007733493682089/28060999477855518720000$ |
$1.03380$ |
$7.46432$ |
$[1, 1, 0, -8507197498, 302011019305108]$ |
\(y^2+xy=x^3+x^2-8507197498x+302011019305108\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 52.12.0-4.c.1.2, 84.12.0.?, $\ldots$ |
$[(54933, 648275)]$ |
46410.h4 |
46410i3 |
46410.h |
46410i |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{9} \cdot 3^{4} \cdot 5^{16} \cdot 7^{12} \cdot 13^{3} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.8 |
2B |
$2184$ |
$48$ |
$0$ |
$5.953223749$ |
$1$ |
|
$2$ |
$185794560$ |
$4.782799$ |
$-36063852191950372967514090386599849/55613397696702747890625000000000$ |
$1.04074$ |
$7.52604$ |
$[1, 1, 0, -6883079738, 420764955691668]$ |
\(y^2+xy=x^3+x^2-6883079738x+420764955691668\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 52.12.0-4.c.1.1, 104.24.0.?, $\ldots$ |
$[(80873, 19785380)]$ |
46410.i1 |
46410k4 |
46410.i |
46410k |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{2} \cdot 3^{4} \cdot 5^{4} \cdot 7^{4} \cdot 13 \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$61880$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$360448$ |
$1.657240$ |
$6160540455434488353049/107450752500$ |
$0.95465$ |
$4.66926$ |
$[1, 1, 0, -381913, -91003007]$ |
\(y^2+xy=x^3+x^2-381913x-91003007\) |
2.3.0.a.1, 4.6.0.c.1, 52.12.0-4.c.1.1, 68.12.0-4.c.1.1, 280.12.0.?, $\ldots$ |
$[]$ |
46410.i2 |
46410k3 |
46410.i |
46410k |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{2} \cdot 3^{16} \cdot 5 \cdot 7 \cdot 13^{4} \cdot 17 \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$61880$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$0$ |
$360448$ |
$1.657240$ |
$5071506329733538969/2926108608384780$ |
$0.98487$ |
$4.00829$ |
$[1, 1, 0, -35793, 127737]$ |
\(y^2+xy=x^3+x^2-35793x+127737\) |
2.3.0.a.1, 4.6.0.c.1, 68.12.0-4.c.1.2, 104.12.0.?, 140.12.0.?, $\ldots$ |
$[]$ |
46410.i3 |
46410k2 |
46410.i |
46410k |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3^{8} \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \cdot 17^{2} \) |
$0$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.6.0.1 |
2Cs |
$30940$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$2$ |
$180224$ |
$1.310665$ |
$1508565467598193369/6280737699600$ |
$0.91747$ |
$3.89545$ |
$[1, 1, 0, -23893, -1426403]$ |
\(y^2+xy=x^3+x^2-23893x-1426403\) |
2.6.0.a.1, 52.12.0-2.a.1.1, 68.12.0-2.a.1.1, 140.12.0.?, 884.24.0.?, $\ldots$ |
$[]$ |
46410.i4 |
46410k1 |
46410.i |
46410k |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{4} \cdot 5 \cdot 7 \cdot 13 \cdot 17^{4} \) |
$0$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$61880$ |
$48$ |
$0$ |
$1$ |
$1$ |
|
$1$ |
$90112$ |
$0.964092$ |
$-51184652297689/788010612480$ |
$0.90118$ |
$3.24649$ |
$[1, 1, 0, -773, -43827]$ |
\(y^2+xy=x^3+x^2-773x-43827\) |
2.3.0.a.1, 4.6.0.c.1, 52.12.0-4.c.1.2, 136.12.0.?, 140.12.0.?, $\ldots$ |
$[]$ |
46410.j1 |
46410g4 |
46410.j |
46410g |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{3} \cdot 3^{3} \cdot 5^{2} \cdot 7 \cdot 13^{4} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.7 |
2B |
$37128$ |
$48$ |
$0$ |
$8.171952159$ |
$4$ |
$2$ |
$2$ |
$737280$ |
$2.060574$ |
$4451879473171293653671609/18353298600$ |
$1.01998$ |
$5.28189$ |
$[1, 1, 0, -3427203, -2443497147]$ |
\(y^2+xy=x^3+x^2-3427203x-2443497147\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 104.24.0.?, 1428.12.0.?, $\ldots$ |
$[(2471, 63441)]$ |
46410.j2 |
46410g2 |
46410.j |
46410g |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{6} \cdot 3^{6} \cdot 5^{4} \cdot 7^{2} \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.1 |
2Cs |
$37128$ |
$48$ |
$0$ |
$4.085976079$ |
$1$ |
|
$6$ |
$368640$ |
$1.713999$ |
$1086934883783829079609/69785974440000$ |
$0.99437$ |
$4.50781$ |
$[1, 1, 0, -214203, -38245347]$ |
\(y^2+xy=x^3+x^2-214203x-38245347\) |
2.6.0.a.1, 8.12.0-2.a.1.1, 52.12.0-2.a.1.1, 104.24.0.?, 1428.12.0.?, $\ldots$ |
$[(959, 24808)]$ |
46410.j3 |
46410g3 |
46410.j |
46410g |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{3} \cdot 3^{12} \cdot 5^{2} \cdot 7^{4} \cdot 13 \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.8 |
2B |
$37128$ |
$48$ |
$0$ |
$2.042988039$ |
$1$ |
|
$4$ |
$737280$ |
$2.060574$ |
$-900804278922017287609/277087063526418600$ |
$0.95133$ |
$4.53000$ |
$[1, 1, 0, -201203, -43073547]$ |
\(y^2+xy=x^3+x^2-201203x-43073547\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 52.12.0-4.c.1.1, 104.24.0.?, $\ldots$ |
$[(739, 14208)]$ |
46410.j4 |
46410g1 |
46410.j |
46410g |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{12} \cdot 3^{3} \cdot 5^{8} \cdot 7 \cdot 13 \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.12 |
2B |
$37128$ |
$48$ |
$0$ |
$8.171952159$ |
$1$ |
|
$1$ |
$184320$ |
$1.367426$ |
$316892346232279609/66830400000000$ |
$0.91378$ |
$3.75024$ |
$[1, 1, 0, -14203, -525347]$ |
\(y^2+xy=x^3+x^2-14203x-525347\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 52.12.0-4.c.1.2, 104.24.0.?, $\ldots$ |
$[(25062/7, 3767611/7)]$ |
46410.k1 |
46410h4 |
46410.k |
46410h |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2 \cdot 3 \cdot 5^{8} \cdot 7 \cdot 13^{4} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.7 |
2B |
$37128$ |
$48$ |
$0$ |
$1.667772382$ |
$4$ |
$2$ |
$6$ |
$147456$ |
$1.178253$ |
$23989788887201929/7965841406250$ |
$0.90340$ |
$3.51005$ |
$[1, 1, 0, -6008, -119538]$ |
\(y^2+xy=x^3+x^2-6008x-119538\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 104.24.0.?, 1428.12.0.?, $\ldots$ |
$[(-23, 96)]$ |
46410.k2 |
46410h2 |
46410.k |
46410h |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{2} \cdot 3^{2} \cdot 5^{4} \cdot 7^{2} \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.1 |
2Cs |
$37128$ |
$48$ |
$0$ |
$0.833886191$ |
$1$ |
|
$14$ |
$73728$ |
$0.831679$ |
$1603626125868649/53847202500$ |
$0.87766$ |
$3.25827$ |
$[1, 1, 0, -2438, 43968]$ |
\(y^2+xy=x^3+x^2-2438x+43968\) |
2.6.0.a.1, 8.12.0-2.a.1.1, 52.12.0-2.a.1.1, 104.24.0.?, 1428.12.0.?, $\ldots$ |
$[(-2, 222)]$ |
46410.k3 |
46410h1 |
46410.k |
46410h |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.12 |
2B |
$37128$ |
$48$ |
$0$ |
$1.667772382$ |
$1$ |
|
$5$ |
$36864$ |
$0.485106$ |
$1564491509212969/1856400$ |
$0.87684$ |
$3.25598$ |
$[1, 1, 0, -2418, 44772]$ |
\(y^2+xy=x^3+x^2-2418x+44772\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 52.12.0-4.c.1.2, 104.24.0.?, $\ldots$ |
$[(29, -5)]$ |
46410.k4 |
46410h3 |
46410.k |
46410h |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2 \cdot 3^{4} \cdot 5^{2} \cdot 7^{4} \cdot 13 \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
8.12.0.8 |
2B |
$37128$ |
$48$ |
$0$ |
$0.416943095$ |
$1$ |
|
$8$ |
$147456$ |
$1.178253$ |
$59095693799351/10558110940650$ |
$0.93525$ |
$3.48427$ |
$[1, 1, 0, 812, 156418]$ |
\(y^2+xy=x^3+x^2+812x+156418\) |
2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 52.12.0-4.c.1.1, 104.24.0.?, $\ldots$ |
$[(-11, 388)]$ |
46410.l1 |
46410j1 |
46410.l |
46410j |
$1$ |
$1$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{7} \cdot 3^{7} \cdot 5^{2} \cdot 7 \cdot 13 \cdot 17 \) |
$1$ |
$\mathsf{trivial}$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
|
|
|
$37128$ |
$2$ |
$0$ |
$10.02496614$ |
$1$ |
|
$0$ |
$141120$ |
$1.140638$ |
$-2888094474031216969/10826524800$ |
$0.92071$ |
$3.95589$ |
$[1, 1, 0, -29668, -1979312]$ |
\(y^2+xy=x^3+x^2-29668x-1979312\) |
37128.2.0.? |
$[(33621/13, 229321/13)]$ |
46410.m1 |
46410m2 |
46410.m |
46410m |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{6} \cdot 3^{3} \cdot 5^{2} \cdot 7^{6} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$92820$ |
$12$ |
$0$ |
$1.417006956$ |
$1$ |
|
$6$ |
$276480$ |
$1.616774$ |
$421531012285745314681/14601840926400$ |
$0.94376$ |
$4.41966$ |
$[1, 1, 0, -156207, 23697189]$ |
\(y^2+xy=x^3+x^2-156207x+23697189\) |
2.3.0.a.1, 204.6.0.?, 1820.6.0.?, 92820.12.0.? |
$[(230, -63)]$ |
46410.m2 |
46410m1 |
46410.m |
46410m |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{12} \cdot 3^{6} \cdot 5 \cdot 7^{3} \cdot 13 \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$92820$ |
$12$ |
$0$ |
$2.834013912$ |
$1$ |
|
$5$ |
$138240$ |
$1.270199$ |
$-89747507348586361/19239456337920$ |
$0.90602$ |
$3.66216$ |
$[1, 1, 0, -9327, 402021]$ |
\(y^2+xy=x^3+x^2-9327x+402021\) |
2.3.0.a.1, 204.6.0.?, 910.6.0.?, 92820.12.0.? |
$[(-50, 889)]$ |
46410.n1 |
46410s4 |
46410.n |
46410s |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{3} \cdot 3^{4} \cdot 5 \cdot 7^{3} \cdot 13 \cdot 17^{4} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$185640$ |
$48$ |
$0$ |
$0.978535019$ |
$1$ |
|
$4$ |
$442368$ |
$1.878994$ |
$95210863233510962017081/1206641250360$ |
$0.96486$ |
$4.92406$ |
$[1, 1, 0, -951307, 356736229]$ |
\(y^2+xy=x^3+x^2-951307x+356736229\) |
2.3.0.a.1, 4.6.0.c.1, 104.12.0.?, 140.12.0.?, 408.12.0.?, $\ldots$ |
$[(565, -188)]$ |
46410.n2 |
46410s2 |
46410.n |
46410s |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{6} \cdot 3^{2} \cdot 5^{2} \cdot 7^{6} \cdot 13^{2} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.6.0.1 |
2Cs |
$185640$ |
$48$ |
$0$ |
$0.489267509$ |
$1$ |
|
$16$ |
$221184$ |
$1.532421$ |
$23304472877725373881/82743765249600$ |
$0.93091$ |
$4.15021$ |
$[1, 1, 0, -59507, 5545389]$ |
\(y^2+xy=x^3+x^2-59507x+5545389\) |
2.6.0.a.1, 104.12.0.?, 140.12.0.?, 204.12.0.?, 3640.24.0.?, $\ldots$ |
$[(173, 596)]$ |
46410.n3 |
46410s3 |
46410.n |
46410s |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{3} \cdot 3 \cdot 5^{4} \cdot 7^{12} \cdot 13 \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$185640$ |
$48$ |
$0$ |
$0.978535019$ |
$1$ |
|
$4$ |
$442368$ |
$1.878994$ |
$-3969837635175430201/45883867071315000$ |
$0.95650$ |
$4.26871$ |
$[1, 1, 0, -32987, 10547061]$ |
\(y^2+xy=x^3+x^2-32987x+10547061\) |
2.3.0.a.1, 4.6.0.c.1, 104.12.0.?, 204.12.0.?, 280.12.0.?, $\ldots$ |
$[(37, 3044)]$ |
46410.n4 |
46410s1 |
46410.n |
46410s |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{12} \cdot 3 \cdot 5 \cdot 7^{3} \cdot 13^{4} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$185640$ |
$48$ |
$0$ |
$0.978535019$ |
$1$ |
|
$7$ |
$110592$ |
$1.185848$ |
$17681870665400761/10232167895040$ |
$1.01546$ |
$3.48165$ |
$[1, 1, 0, -5427, -3219]$ |
\(y^2+xy=x^3+x^2-5427x-3219\) |
2.3.0.a.1, 4.6.0.c.1, 104.12.0.?, 140.12.0.?, 204.12.0.?, $\ldots$ |
$[(95, 544)]$ |
46410.o1 |
46410o2 |
46410.o |
46410o |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{4} \cdot 3 \cdot 5^{2} \cdot 7^{6} \cdot 13^{2} \cdot 17 \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$92820$ |
$12$ |
$0$ |
$0.541854454$ |
$1$ |
|
$8$ |
$86016$ |
$0.978737$ |
$6497434355239801/405606692400$ |
$0.88740$ |
$3.38848$ |
$[1, 1, 0, -3887, -89739]$ |
\(y^2+xy=x^3+x^2-3887x-89739\) |
2.3.0.a.1, 204.6.0.?, 1820.6.0.?, 92820.12.0.? |
$[(-38, 89)]$ |
46410.o2 |
46410o1 |
46410.o |
46410o |
$2$ |
$2$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( - 2^{8} \cdot 3^{2} \cdot 5 \cdot 7^{3} \cdot 13 \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.3.0.1 |
2B |
$92820$ |
$12$ |
$0$ |
$1.083708909$ |
$1$ |
|
$5$ |
$43008$ |
$0.632163$ |
$788632918919/14845259520$ |
$0.87470$ |
$2.87051$ |
$[1, 1, 0, 193, -5691]$ |
\(y^2+xy=x^3+x^2+193x-5691\) |
2.3.0.a.1, 204.6.0.?, 910.6.0.?, 92820.12.0.? |
$[(30, 153)]$ |
46410.p1 |
46410n4 |
46410.p |
46410n |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{5} \cdot 3 \cdot 5 \cdot 7^{4} \cdot 13^{4} \cdot 17^{2} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$10920$ |
$48$ |
$0$ |
$5.974411570$ |
$1$ |
|
$2$ |
$491520$ |
$1.875774$ |
$44816807438220995641801/9512718589920$ |
$0.96214$ |
$4.85394$ |
$[1, 1, 0, -740012, -245331216]$ |
\(y^2+xy=x^3+x^2-740012x-245331216\) |
2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 24.12.0-4.c.1.2, 120.24.0.?, $\ldots$ |
$[(4615, 305357)]$ |
46410.p2 |
46410n3 |
46410.p |
46410n |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{5} \cdot 3 \cdot 5^{4} \cdot 7 \cdot 13 \cdot 17^{8} \) |
$1$ |
$\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
4.6.0.1 |
2B |
$10920$ |
$48$ |
$0$ |
$5.974411570$ |
$1$ |
|
$2$ |
$491520$ |
$1.875774$ |
$80870462846141298121/38087635627860000$ |
$0.95292$ |
$4.26601$ |
$[1, 1, 0, -90092, 4453296]$ |
\(y^2+xy=x^3+x^2-90092x+4453296\) |
2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.1, 40.12.0-4.c.1.5, 120.24.0.?, $\ldots$ |
$[(301, 2022)]$ |
46410.p3 |
46410n2 |
46410.p |
46410n |
$4$ |
$4$ |
\( 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \) |
\( 2^{10} \cdot 3^{2} \cdot 5^{2} \cdot 7^{2} \cdot 13^{2} \cdot 17^{4} \) |
$1$ |
$\Z/2\Z\oplus\Z/2\Z$ |
$\Q$ |
|
$\mathrm{SU}(2)$ |
✓ |
|
$2$ |
2.6.0.1 |
2Cs |
$10920$ |
$48$ |
$0$ |
$2.987205785$ |
$1$ |
|
$8$ |
$245760$ |
$1.529202$ |
$11056793118237203401/159353257190400$ |
$0.92756$ |
$4.08083$ |
$[1, 1, 0, -46412, -3819696]$ |
\(y^2+xy=x^3+x^2-46412x-3819696\) |
2.6.0.a.1, 20.12.0-2.a.1.1, 24.12.0-2.a.1.1, 120.24.0.?, 364.12.0.?, $\ldots$ |
$[(-115, 173)]$ |