Learn more

Refine search


Results (1-50 of 220 matches)

Next   displayed columns for results
Label Class Conductor Rank Torsion CM Regulator Weierstrass coefficients Weierstrass equation mod-mm images
46410.a1 46410.a 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 22 Z/2Z\Z/2\Z 7.8997139317.899713931 [1,1,0,41093,2836347][1, 1, 0, -41093, -2836347] y2+xy=x3+x241093x2836347y^2+xy=x^3+x^2-41093x-2836347 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 104.24.0.?, 340.12.0.?, \ldots
46410.a2 46410.a 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 22 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 1.9749284821.974928482 [1,1,0,10493,364413][1, 1, 0, -10493, 364413] y2+xy=x3+x210493x+364413y^2+xy=x^3+x^2-10493x+364413 2.6.0.a.1, 8.12.0-2.a.1.1, 52.12.0-2.a.1.1, 104.24.0.?, 340.12.0.?, \ldots
46410.a3 46410.a 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 22 Z/2Z\Z/2\Z 1.9749284821.974928482 [1,1,0,10173,390717][1, 1, 0, -10173, 390717] y2+xy=x3+x210173x+390717y^2+xy=x^3+x^2-10173x+390717 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 52.12.0-4.c.1.2, 104.24.0.?, \ldots
46410.a4 46410.a 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 22 Z/2Z\Z/2\Z 1.9749284821.974928482 [1,1,0,14987,1888117][1, 1, 0, 14987, 1888117] y2+xy=x3+x2+14987x+1888117y^2+xy=x^3+x^2+14987x+1888117 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 52.12.0-4.c.1.1, 104.24.0.?, \ldots
46410.b1 46410.b 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [1,1,0,516418,138505948][1, 1, 0, -516418, 138505948] y2+xy=x3+x2516418x+138505948y^2+xy=x^3+x^2-516418x+138505948 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 40.12.0-4.c.1.2, 120.24.0.?, \ldots
46410.b2 46410.b 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,1,0,79018,5573612][1, 1, 0, -79018, -5573612] y2+xy=x3+x279018x5573612y^2+xy=x^3+x^2-79018x-5573612 2.6.0.a.1, 12.12.0-2.a.1.1, 40.12.0-2.a.1.1, 120.24.0.?, 6188.12.0.?, \ldots
46410.b3 46410.b 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [1,1,0,71018,7312812][1, 1, 0, -71018, -7312812] y2+xy=x3+x271018x7312812y^2+xy=x^3+x^2-71018x-7312812 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 40.12.0-4.c.1.4, 120.24.0.?, \ldots
46410.b4 46410.b 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [1,1,0,230382,38184372][1, 1, 0, 230382, -38184372] y2+xy=x3+x2+230382x38184372y^2+xy=x^3+x^2+230382x-38184372 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 40.12.0-4.c.1.1, 120.24.0.?, \ldots
46410.c1 46410.c 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 1.0287289401.028728940 [1,1,0,240473,45288633][1, 1, 0, -240473, 45288633] y2+xy=x3+x2240473x+45288633y^2+xy=x^3+x^2-240473x+45288633 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 52.12.0-4.c.1.2, 156.24.0.?, \ldots
46410.c2 46410.c 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 0.5143644700.514364470 [1,1,0,15053,700557][1, 1, 0, -15053, 700557] y2+xy=x3+x215053x+700557y^2+xy=x^3+x^2-15053x+700557 2.6.0.a.1, 12.12.0-2.a.1.1, 52.12.0-2.a.1.1, 140.12.0.?, 156.24.0.?, \ldots
46410.c3 46410.c 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 1.0287289401.028728940 [1,1,0,5953,1550497][1, 1, 0, -5953, 1550497] y2+xy=x3+x25953x+1550497y^2+xy=x^3+x^2-5953x+1550497 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 52.12.0-4.c.1.1, 140.12.0.?, \ldots
46410.c4 46410.c 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 1.0287289401.028728940 [1,1,0,1533,5187][1, 1, 0, -1533, -5187] y2+xy=x3+x21533x5187y^2+xy=x^3+x^2-1533x-5187 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 104.12.0.?, 140.12.0.?, \ldots
46410.d1 46410.d 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 134.1067798134.1067798 [1,1,0,389305321043,93494136872571087][1, 1, 0, -389305321043, -93494136872571087] y2+xy=x3+x2389305321043x93494136872571087y^2+xy=x^3+x^2-389305321043x-93494136872571087 2.3.0.a.1, 4.6.0.c.1, 28.12.0-4.c.1.2, 40.12.0-4.c.1.5, 52.12.0-4.c.1.1, \ldots
46410.d2 46410.d 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 67.0533899067.05338990 [1,1,0,24333584823,1460601042571323][1, 1, 0, -24333584823, -1460601042571323] y2+xy=x3+x224333584823x1460601042571323y^2+xy=x^3+x^2-24333584823x-1460601042571323 2.6.0.a.1, 20.12.0-2.a.1.1, 28.12.0-2.a.1.1, 52.12.0-2.a.1.1, 140.24.0.?, \ldots
46410.d3 46410.d 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 134.1067798134.1067798 [1,1,0,20930167323,1883681914046823][1, 1, 0, -20930167323, -1883681914046823] y2+xy=x3+x220930167323x1883681914046823y^2+xy=x^3+x^2-20930167323x-1883681914046823 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 28.12.0-4.c.1.1, 70.6.0.a.1, \ldots
46410.d4 46410.d 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 33.5266949533.52669495 [1,1,0,1735564903,15959344729547][1, 1, 0, -1735564903, -15959344729547] y2+xy=x3+x21735564903x15959344729547y^2+xy=x^3+x^2-1735564903x-15959344729547 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.2, 52.12.0-4.c.1.2, 56.12.0-4.c.1.5, \ldots
46410.e1 46410.e 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 trivial\mathsf{trivial} 3.2363492113.236349211 [1,1,0,92228,47906022][1, 1, 0, -92228, -47906022] y2+xy=x3+x292228x47906022y^2+xy=x^3+x^2-92228x-47906022 37128.2.0.?
46410.f1 46410.f 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 00 trivial\mathsf{trivial} 11 [1,1,0,11522913,15163667757][1, 1, 0, -11522913, -15163667757] y2+xy=x3+x211522913x15163667757y^2+xy=x^3+x^2-11522913x-15163667757 26520.2.0.?
46410.g1 46410.g 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [1,1,0,2507978363,48341976384717][1, 1, 0, -2507978363, 48341976384717] y2+xy=x3+x22507978363x+48341976384717y^2+xy=x^3+x^2-2507978363x+48341976384717 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.1, 28.12.0-4.c.1.1, 42.6.0.a.1, \ldots
46410.g2 46410.g 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [1,1,0,215146843,142578285613][1, 1, 0, -215146843, 142578285613] y2+xy=x3+x2215146843x+142578285613y^2+xy=x^3+x^2-215146843x+142578285613 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.3, 28.12.0-4.c.1.2, 168.24.0.?, \ldots
46410.g3 46410.g 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,1,0,156836843,754401791613][1, 1, 0, -156836843, 754401791613] y2+xy=x3+x2156836843x+754401791613y^2+xy=x^3+x^2-156836843x+754401791613 2.6.0.a.1, 12.12.0-2.a.1.1, 28.12.0-2.a.1.1, 84.24.0.?, 340.12.0.?, \ldots
46410.g4 46410.g 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [1,1,0,6246123,20452740477][1, 1, 0, -6246123, 20452740477] y2+xy=x3+x26246123x+20452740477y^2+xy=x^3+x^2-6246123x+20452740477 2.3.0.a.1, 4.6.0.c.1, 12.12.0-4.c.1.2, 56.12.0-4.c.1.5, 168.24.0.?, \ldots
46410.h1 46410.h 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 5.9532237495.953223749 [1,1,0,10154908218,176807644788372][1, 1, 0, -10154908218, 176807644788372] y2+xy=x3+x210154908218x+176807644788372y^2+xy=x^3+x^2-10154908218x+176807644788372 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 84.12.0.?, 104.24.0.?, \ldots
46410.h2 46410.h 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 2.9766118742.976611874 [1,1,0,8508508218,301913300148372][1, 1, 0, -8508508218, 301913300148372] y2+xy=x3+x28508508218x+301913300148372y^2+xy=x^3+x^2-8508508218x+301913300148372 2.6.0.a.1, 8.12.0-2.a.1.1, 52.12.0-2.a.1.1, 84.12.0.?, 104.24.0.?, \ldots
46410.h3 46410.h 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 5.9532237495.953223749 [1,1,0,8507197498,302011019305108][1, 1, 0, -8507197498, 302011019305108] y2+xy=x3+x28507197498x+302011019305108y^2+xy=x^3+x^2-8507197498x+302011019305108 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 52.12.0-4.c.1.2, 84.12.0.?, \ldots
46410.h4 46410.h 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 5.9532237495.953223749 [1,1,0,6883079738,420764955691668][1, 1, 0, -6883079738, 420764955691668] y2+xy=x3+x26883079738x+420764955691668y^2+xy=x^3+x^2-6883079738x+420764955691668 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 52.12.0-4.c.1.1, 104.24.0.?, \ldots
46410.i1 46410.i 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [1,1,0,381913,91003007][1, 1, 0, -381913, -91003007] y2+xy=x3+x2381913x91003007y^2+xy=x^3+x^2-381913x-91003007 2.3.0.a.1, 4.6.0.c.1, 52.12.0-4.c.1.1, 68.12.0-4.c.1.1, 280.12.0.?, \ldots
46410.i2 46410.i 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [1,1,0,35793,127737][1, 1, 0, -35793, 127737] y2+xy=x3+x235793x+127737y^2+xy=x^3+x^2-35793x+127737 2.3.0.a.1, 4.6.0.c.1, 68.12.0-4.c.1.2, 104.12.0.?, 140.12.0.?, \ldots
46410.i3 46410.i 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 00 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 11 [1,1,0,23893,1426403][1, 1, 0, -23893, -1426403] y2+xy=x3+x223893x1426403y^2+xy=x^3+x^2-23893x-1426403 2.6.0.a.1, 52.12.0-2.a.1.1, 68.12.0-2.a.1.1, 140.12.0.?, 884.24.0.?, \ldots
46410.i4 46410.i 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 00 Z/2Z\Z/2\Z 11 [1,1,0,773,43827][1, 1, 0, -773, -43827] y2+xy=x3+x2773x43827y^2+xy=x^3+x^2-773x-43827 2.3.0.a.1, 4.6.0.c.1, 52.12.0-4.c.1.2, 136.12.0.?, 140.12.0.?, \ldots
46410.j1 46410.j 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 8.1719521598.171952159 [1,1,0,3427203,2443497147][1, 1, 0, -3427203, -2443497147] y2+xy=x3+x23427203x2443497147y^2+xy=x^3+x^2-3427203x-2443497147 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 104.24.0.?, 1428.12.0.?, \ldots
46410.j2 46410.j 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 4.0859760794.085976079 [1,1,0,214203,38245347][1, 1, 0, -214203, -38245347] y2+xy=x3+x2214203x38245347y^2+xy=x^3+x^2-214203x-38245347 2.6.0.a.1, 8.12.0-2.a.1.1, 52.12.0-2.a.1.1, 104.24.0.?, 1428.12.0.?, \ldots
46410.j3 46410.j 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 2.0429880392.042988039 [1,1,0,201203,43073547][1, 1, 0, -201203, -43073547] y2+xy=x3+x2201203x43073547y^2+xy=x^3+x^2-201203x-43073547 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 52.12.0-4.c.1.1, 104.24.0.?, \ldots
46410.j4 46410.j 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 8.1719521598.171952159 [1,1,0,14203,525347][1, 1, 0, -14203, -525347] y2+xy=x3+x214203x525347y^2+xy=x^3+x^2-14203x-525347 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 52.12.0-4.c.1.2, 104.24.0.?, \ldots
46410.k1 46410.k 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 1.6677723821.667772382 [1,1,0,6008,119538][1, 1, 0, -6008, -119538] y2+xy=x3+x26008x119538y^2+xy=x^3+x^2-6008x-119538 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.3, 104.24.0.?, 1428.12.0.?, \ldots
46410.k2 46410.k 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 0.8338861910.833886191 [1,1,0,2438,43968][1, 1, 0, -2438, 43968] y2+xy=x3+x22438x+43968y^2+xy=x^3+x^2-2438x+43968 2.6.0.a.1, 8.12.0-2.a.1.1, 52.12.0-2.a.1.1, 104.24.0.?, 1428.12.0.?, \ldots
46410.k3 46410.k 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 1.6677723821.667772382 [1,1,0,2418,44772][1, 1, 0, -2418, 44772] y2+xy=x3+x22418x+44772y^2+xy=x^3+x^2-2418x+44772 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.2, 52.12.0-4.c.1.2, 104.24.0.?, \ldots
46410.k4 46410.k 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 0.4169430950.416943095 [1,1,0,812,156418][1, 1, 0, 812, 156418] y2+xy=x3+x2+812x+156418y^2+xy=x^3+x^2+812x+156418 2.3.0.a.1, 4.6.0.c.1, 8.12.0-4.c.1.4, 52.12.0-4.c.1.1, 104.24.0.?, \ldots
46410.l1 46410.l 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 trivial\mathsf{trivial} 10.0249661410.02496614 [1,1,0,29668,1979312][1, 1, 0, -29668, -1979312] y2+xy=x3+x229668x1979312y^2+xy=x^3+x^2-29668x-1979312 37128.2.0.?
46410.m1 46410.m 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 1.4170069561.417006956 [1,1,0,156207,23697189][1, 1, 0, -156207, 23697189] y2+xy=x3+x2156207x+23697189y^2+xy=x^3+x^2-156207x+23697189 2.3.0.a.1, 204.6.0.?, 1820.6.0.?, 92820.12.0.?
46410.m2 46410.m 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 2.8340139122.834013912 [1,1,0,9327,402021][1, 1, 0, -9327, 402021] y2+xy=x3+x29327x+402021y^2+xy=x^3+x^2-9327x+402021 2.3.0.a.1, 204.6.0.?, 910.6.0.?, 92820.12.0.?
46410.n1 46410.n 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 0.9785350190.978535019 [1,1,0,951307,356736229][1, 1, 0, -951307, 356736229] y2+xy=x3+x2951307x+356736229y^2+xy=x^3+x^2-951307x+356736229 2.3.0.a.1, 4.6.0.c.1, 104.12.0.?, 140.12.0.?, 408.12.0.?, \ldots
46410.n2 46410.n 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 0.4892675090.489267509 [1,1,0,59507,5545389][1, 1, 0, -59507, 5545389] y2+xy=x3+x259507x+5545389y^2+xy=x^3+x^2-59507x+5545389 2.6.0.a.1, 104.12.0.?, 140.12.0.?, 204.12.0.?, 3640.24.0.?, \ldots
46410.n3 46410.n 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 0.9785350190.978535019 [1,1,0,32987,10547061][1, 1, 0, -32987, 10547061] y2+xy=x3+x232987x+10547061y^2+xy=x^3+x^2-32987x+10547061 2.3.0.a.1, 4.6.0.c.1, 104.12.0.?, 204.12.0.?, 280.12.0.?, \ldots
46410.n4 46410.n 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 0.9785350190.978535019 [1,1,0,5427,3219][1, 1, 0, -5427, -3219] y2+xy=x3+x25427x3219y^2+xy=x^3+x^2-5427x-3219 2.3.0.a.1, 4.6.0.c.1, 104.12.0.?, 140.12.0.?, 204.12.0.?, \ldots
46410.o1 46410.o 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 0.5418544540.541854454 [1,1,0,3887,89739][1, 1, 0, -3887, -89739] y2+xy=x3+x23887x89739y^2+xy=x^3+x^2-3887x-89739 2.3.0.a.1, 204.6.0.?, 1820.6.0.?, 92820.12.0.?
46410.o2 46410.o 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 1.0837089091.083708909 [1,1,0,193,5691][1, 1, 0, 193, -5691] y2+xy=x3+x2+193x5691y^2+xy=x^3+x^2+193x-5691 2.3.0.a.1, 204.6.0.?, 910.6.0.?, 92820.12.0.?
46410.p1 46410.p 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 5.9744115705.974411570 [1,1,0,740012,245331216][1, 1, 0, -740012, -245331216] y2+xy=x3+x2740012x245331216y^2+xy=x^3+x^2-740012x-245331216 2.3.0.a.1, 4.6.0.c.1, 20.12.0-4.c.1.1, 24.12.0-4.c.1.2, 120.24.0.?, \ldots
46410.p2 46410.p 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2Z\Z/2\Z 5.9744115705.974411570 [1,1,0,90092,4453296][1, 1, 0, -90092, 4453296] y2+xy=x3+x290092x+4453296y^2+xy=x^3+x^2-90092x+4453296 2.3.0.a.1, 4.6.0.c.1, 24.12.0-4.c.1.1, 40.12.0-4.c.1.5, 120.24.0.?, \ldots
46410.p3 46410.p 23571317 2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 11 Z/2ZZ/2Z\Z/2\Z\oplus\Z/2\Z 2.9872057852.987205785 [1,1,0,46412,3819696][1, 1, 0, -46412, -3819696] y2+xy=x3+x246412x3819696y^2+xy=x^3+x^2-46412x-3819696 2.6.0.a.1, 20.12.0-2.a.1.1, 24.12.0-2.a.1.1, 120.24.0.?, 364.12.0.?, \ldots
Next   displayed columns for results