Show commands for:
SageMath
sage: E = EllipticCurve("46410.c1")
sage: E.isogeny_class()
Elliptic curves in class 46410d
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
46410.c4 | 46410d1 | [1, 1, 0, -1533, -5187] | [2] | 73728 | \(\Gamma_0(N)\)-optimal |
46410.c2 | 46410d2 | [1, 1, 0, -15053, 700557] | [2, 2] | 147456 | |
46410.c3 | 46410d3 | [1, 1, 0, -5953, 1550497] | [2] | 294912 | |
46410.c1 | 46410d4 | [1, 1, 0, -240473, 45288633] | [2] | 294912 |
Rank
sage: E.rank()
The elliptic curves in class 46410d have rank \(1\).
Modular form 46410.2.a.c
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with Cremona labels.