Properties

Label 46410f
Number of curves 4
Conductor 46410
CM no
Rank 0
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("46410.g1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 46410f

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
46410.g4 46410f1 [1, 1, 0, -6246123, 20452740477] [2] 6488064 \(\Gamma_0(N)\)-optimal
46410.g3 46410f2 [1, 1, 0, -156836843, 754401791613] [2, 2] 12976128  
46410.g2 46410f3 [1, 1, 0, -215146843, 142578285613] [2] 25952256  
46410.g1 46410f4 [1, 1, 0, -2507978363, 48341976384717] [2] 25952256  

Rank

sage: E.rank()
 

The elliptic curves in class 46410f have rank \(0\).

Modular form 46410.2.a.g

sage: E.q_eigenform(10)
 
\( q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} + q^{7} - q^{8} + q^{9} + q^{10} - 4q^{11} - q^{12} - q^{13} - q^{14} + q^{15} + q^{16} - q^{17} - q^{18} + 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.