Properties

Label 46410i
Number of curves 4
Conductor 46410
CM no
Rank 1
Graph

Related objects

Downloads

Learn more about

Show commands for: SageMath

sage: E = EllipticCurve("46410.h1")
 
sage: E.isogeny_class()
 

Elliptic curves in class 46410i

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients Torsion structure Modular degree Optimality
46410.h3 46410i1 [1, 1, 0, -8507197498, 302011019305108] [2] 46448640 \(\Gamma_0(N)\)-optimal
46410.h2 46410i2 [1, 1, 0, -8508508218, 301913300148372] [2, 2] 92897280  
46410.h4 46410i3 [1, 1, 0, -6883079738, 420764955691668] [2] 185794560  
46410.h1 46410i4 [1, 1, 0, -10154908218, 176807644788372] [2] 185794560  

Rank

sage: E.rank()
 

The elliptic curves in class 46410i have rank \(1\).

Modular form 46410.2.a.h

sage: E.q_eigenform(10)
 
\( q - q^{2} - q^{3} + q^{4} - q^{5} + q^{6} + q^{7} - q^{8} + q^{9} + q^{10} - 4q^{11} - q^{12} - q^{13} - q^{14} + q^{15} + q^{16} + q^{17} - q^{18} - 4q^{19} + O(q^{20}) \)

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.